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SUMMARY

An experimental investigation was conducted at the Langley aircraft land-
ing loads and traction facility to study the braking and cornering response of
a slip-velocity-controlled, pressure-bias-modulated aircraft antiskid braking
system. The investigation, conducted on dry and wet runway surfaces, utilized
one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9
series 10 airplane. The landing gear strut was replaced by a dynamometer.

During maximum braking, average braking-behavior indexes based upon brake
pressure, brake torque, and drag-force friction coefficient developed by the
antiskid system were higher on dry surfaces than on damp and flooded surfaces.
On the wet surfaces, these indexes were reduced with lighter vertical forces,
increasing speeds, and when new tire treads were replaced by worn treads. The
three braking-behavior indexes agreed with one another and may be used inter-
changeably as a measure of the braking behavior of this antiskid system. How-
ever, these braking~behavior indexes are based upon maximum values of pressure,
torque, and drag-force friction coefficient, which may vary from system to sys-
tem, and any comparisons between different antiskid systems based solely upon
these indexes may be technically misleading. The average cornering-behavior
index based upon the side~force friction coefficient developed by the tire
under antiskid control was decreased on wet runway surfaces, with increasing
yaw angle and carriage speed, and when new tire treads were replaced by worn
treads. The interaction between braking and cornering forces indicated that
during antiskid cycling on the dry runway surfaces, the side-force friction
coefficient was significantly reduced during portions of the braking cycles.
On the flooded runway surfaces, this coefficient was frequently reduced to
negligible values. During the transition from a dry to a flooded surface under
heavy braking, the wheel entered into a deep skid, but the antiskid system
reacted quickly by reducing brake pressure and performed normally during the
remainder of the run on the flooded surface. The time for brake-pressure
recovery following the transition from flooded to dry was 4 sec and was con-
trolled by the decay rate of the residual skid signal built up by the antiskid
system during the initial skid cycles on the first runway surface.

INTRODUCTION

Over the years, the number and variety of airplanes using antiskid braking
systems have steadily increased until most current commercial and military jet
airplanes are now equipped with various skid control devices. The earliest
antiskid systems were generally designed to prevent wheel lockups and excessive
tire wear on dry pavements. Modern skid control devices, however, are more
sophisticated and are designed to provide maximum braking effort while main-
taining full antiskid protection under all weather conditions. Operating sta-
tistics of modern jet airplanes indicate that these antiskid systems are both
effective and dependable; the several million landings that are made each year
in routine fashion with no serious operating problems attest to this fact.



However, it has also been well established, both from flight tests and from
field experience, that the performance of these systems is subject to degrada-
tion on slippery runways; consequently, dangerously long roll-out distances and
reduced steering capability can result during some airplane landing operations
(refs. 1 to 5). There is a need to study different types of antiskid braking
systems in order to find reasons for the degraded braking performance that
occurs under adverse runway conditions; there is also a need to obtain data for
the development of more advanced systems that will insure safe ground handling
operations under all weather conditions.

In an effort to meet these needs, an experimental research program has
been undertaken to study the single-wheel behavior of several different air-
plane antiskid braking systems under the controlled conditions afforded by the
Langley aircraft landing loads and traction facility (formerly called the
Langley landing loads track). The types of skid control devices undergoing
study in this program include a velocity-rate-~controlled system (ref. 6); a
slip-ratio-controlled system with ground speed reference from an unbraked nose
wheel (ref. 7); the present, a slip-velocity-controlled system; and others.

The investigation of all these systems is being conducted with a single main
wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane.

The purpose of this paper is to present the results from a study of the
behavior of a slip~velocity-controlled, pressure-bias-modulated aircraft anti-
skid braking system under maximum braking effort. The parameters varied in the
study included carriage speed, tire loading, yaw angle, tire tread condition,
brake-system operating pressure, and runway wetness conditions. A discussion
of the effects of each of these parameters on the behavior of the skid control
system is presented. In addition, comparisons are made between data obtained
with the skid control system and data obtained from single~cycle braking tests

without antiskid protection.

Hydro-Aire Division of Crane Company provided the antiskid-system hardware
for this investigation, and the Federal Aviation Administration (FAA) provided

the wheels, brakes, and tires.
SYMBOLS
Values are given in both SI and U.S. Customary Units. The measurements

and calculations were made in U.S. Customary Units. Factors relating the two
systems are given in reference 8.

d position of footprint center of pressure
Fy tire vertical force

Fy drag force parallel to plane of wheel

Fy side force perpendicular to plane of wheel

h axle height



I moment of inertia

P power

P pressure

r tire rolling radius
S wheel slip ratio

T torque

t time

v carriage speed

Q angular acceleration
B behavior index

H friction coefficient
P yaw angle

w test wheel angular velocity
Subscripts:

b braking

c cornering

a drag

F friction

f final value

g gross

max maximum wvalue

o initial value

P pressure

r free rolling

s side



T torque
t tire

A bar over a symbol denotes an average value.

APPARATUS AND TEST PROCEDURE
Test Tires

The tires used in this investigation were 40 x 14, type VII, bias-ply
aircraft tires of 22 ply rating with a rated maximum speed of 200 knots
(1 knot = 0.5144 m/sec). The tires were stock retreads with a six-groove
tread pattern, and the study included both new and worn tread configurations.
A photograph of the two test tires having new and worn treads is presented in
figure 1. The new tread had a groove depth of 0.71 cm (0.28 in.) and was con-
sidered new until the groove depth decreased to 0.36 cm (0.14 in.). To gener-
ate worn tires, a commercially available tire grinding machine was employed to
remove tread rubber uniformly from the retreaded tire until a groove depth of
0.05 cm (0.02 in.) remained. This simulated worn tire was probably in a worse
wear condition than is normally experienced in airplane operations. Throughout
this investigation, the tire inflation pressure was maintained at the normal
airline operational pressure of 0.97 MPa (140 psi).

Test Facility

The investigation was performed on a 4800-kg (106 000 1bm) test carriage
at the Langley aircraft landing loads and traction facility described in refer-
ence 9. Figure 2 is a photograph of the carriage with the test wheel assembly
installed; figure 3 is a close-up view of the wheel and other components. An
instrumented dynamometer was used instead of a landing-gear strut to support
the wheel and brake assembly because it provided an accurate measurement of the

tire-ground forces.

For the tests described in this paper, approximately 244 m (800 ft) of the
available 366 m (1200 ft) of the flat concrete test runway were used to provide
braking and cornering data on a dry surface, on an artificially damp surface,
on an artificially flooded surface, and on a natural rain wet surface. With
the exception of transient runway friction tests, the entire runway had a uni-
form surface wetness condition, and antiskid cycling occurred for the entire
244 m (800 ft). The 61 m (200 ft) of runway preceding the test section were
used for the initial wheel spin-up and brake actuation, and the 61 m (200 ft)
beyond the test section were retained for brake release. To obtain a damp con-
dition, the test surface was lightly wetted with no standing water. For the
flooded runway condition, the test section was surrounded by a flexible dam and
flooded to a depth of approximately 1.0 cm (0.4 in.). For the natural rain
surface condition, the flexible dam was removed and no measurement of water

depth was made.




The concrete surface in the test area had a light broom finish in a trans-
verse direction, and the surface texture was not completely uniform, as shown
by the texture depth measurements in the following sketch:

— 366 m (1200 ft)

{< Test area *——-b‘

Test runway (width not to scale)

I—<— 62 m —+— 62 m —+—— 62 m —»Tq——— 62m——+— 62 m ——+—— 62 m —
(200 ft) (200 ft) (200 ft) (200 ft) (200 ft) (200 ft)

Average texture 115 ym 245 um 145 um 137 um 155 pm
depth (0.00453 in.) (0.00965 in.) (0.00571 in.) (0.00539 in.) (0.00610 in.)

Details of the texture depth measurement technique are presented in refer-

ence 10. The average texture depth of the test runway was 159 um (0.00626 in.),
which is slightly less than that of a typical operational runway. (See ref. 11,
for example.) The test runway was quite level compared with airport runways and
had no crown. During the course of testing on the dry surface, particularly
with a yawed tire, rubber was deposited on the runway and it was necessary to
clean the surface periodically.

Skid Control System

A slip-velocity-controlled, pressure-bias-modulated skid control system
was used in this investigation. The system was configured to simulate a brak-
ing system that had the correct electronic and hydraulic components, including
line lengths and sizes, for a single main wheel of a DC-9 series 10 airplane.
Figure 4 is a photograph of the major hydraulic components of the simulated
braking system installed on the test carriage; figure 5 is a schematic of the
system. The brake system is activated by opening the pilot metering valve
(fig. 5), which allows brake fluid to flow from a high-pressure reservoir and
brake selector valve, through the normally open antiskid control valve and
hydraulic fuse, to the brake. The sole function of the brake selector valve
and hydraulic fuse was to duplicate the DC-9 hydraulic system. A pneumatic
piston shown in figure 4 was used to open the pilot metering valve to its full
stroke; thus, maximum braking effort for all tests was provided.

During antiskid braking, an ac signal proportional to instantaneous wheel
speed is generated by a wheel-driven alternator. 1In the control box, this sig-
nal is converted to a dc voltage and compared with a reference wheel speed that
is also derived electronically from the braked wheel. The difference between
the braked-wheel speed and the reference speed is defined as the wheel slip
velocity; thus, a freely rolling wheel has, by definition, zero slip velocity.
When this slip velocity is greater than a certain threshold value, a skid sig-
nal is generated which is transmitted to the antiskid control valve to reduce
brake pressure. When the wheel recovers from the skid and the slip velocity



once again drops below the threshold value, the skid signal is reduced to a
level established by the magnitude, duration, and number of preceding skid sig-
nals that are retained in the pressure-bias-modulation memory circuit which
controls the rate of brake-pressure reapplication. The initial threshold slip
velocity is approximately 3 m/sec (10 ft/sec), but during the course of anti-
skid braking, this threshold value may vary according to the adaptive correc-
tion in the control circuit. A more detailed discussion of the antiskid system
operation can be found in reference 3.

The slip velocity data shown in this report were not obtained from the
control box but were obtained from two dc generators, one measuring test wheel
speed and the other measuring carriage speed. Typical time histories of wheel

speed, slip velocity, skid signal, brake pressure, and the resulting drag-force
friction coefficient Hgq are presented in figure 6 to help describe the system

operation. The points labeled (:) to (:) are used to highlight events which
occur during antiskid cycling. In the figure, the brake pressure is first
applied rapidly [@ to ) and results in a decrease in wheel speed (@],
consequently, an increase in slip velocity ((:)) occurs above the threshold
(dashed line in fig. 6) and thereby produces a small skid signal ((:)]. The
threshold slip velocity shown in fiqure 6 is an initial value; the threshold
is a variable that is dependent upon an adaptive correction in the control
circuit. The skid signal partially closes the antiskid control valve, which
causes a leveling pause in brake-pressure application [(:)). The slip velocity
becomes almost constant ((:) to (:)), and the pressure-bias-modulation circuit
permits the skid signal to be gradually reduced ((:) to (:)J; this reduction
allows a slight rise in brake pressure ((:) to (:)) and a corresponding
increase in the developed friction level ((:) to (:)). At about 3 sec, the
slip velocity agailn increases above the apparent threshold value and the brake
release cycle is repeated.
Instrumentation

The tire friction forces were measured with the dynamometer shown in fig-
ure 3 and illustrated schematically in figure 7. Strain gages were mounted on
the five dynamometer support beams: two of the beams were used for measuring
vertical forces, two were used for measuring drag forces parallel to the wheel
plane, and a single beam was used for measuring side force perpendicular to the

wheel plane. Three accelerometers on the test wheel axle provided information
for inertia corrections to the force data. The brake torque was measured with
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torque links which were independent of the drag-force beams. Transducers were
installed in the hydraulic system (fig. 5) to measure pressures at the pilot
metering valve, at the antiskid control valve, at the hydraulic fuse, at the
brake, and in the return line between the brake and the hydraulic reservoir. A
pressure relief valve in the return line maintained a back pressure of 448 kPa
(65 psi) in the hydraulic lines, and all the pressure transducers were cali-
brated to read zero at this pressure. A steel-reinforced, cogged, rubber tim-
ing belt was driven by the test wheel to run an auxiliary axle which drove the
pulse (ac) alternators and dc generators that were used to obtain a measure of
the test wheel angular velocity. Signals from one of the ac alternators sup-
plied wheel-speed information to the antiskid system. This signal and the skid
signal produced by the antiskid system were recorded for an examination of
their characteristics. A lightweight trailing wheel was mounted on the side

of the test carriage (as shown in fig. 8), and the output from a dc generator
mounted on its axle recorded the carriage speed and was combined with the out-
put from the test wheel dc generator to compute slip velocity and slip ratio.
Due to small shaft misalignments of the two dc generators, a small ac ripple
was induced on the recorded time histories of wheel speed, slip velocity, and
slip ratio. A recording infrared thermometer was used for one test run to
obtain a measure of the tire tread temperature. All data outputs were fed

into signal conditioning equipment and then into two frequency-modulated tape
recorders. A time code was transmitted to both recorders to provide synchroni-
zation of the two sets of data.

Test Procedure

The technique for the braking tests with and without antiskid protection
consisted of rotating the yoke holding the dynamometer and tire assembly to the
chosen yaw angle, propelling the test carriage to the desired speed, applying
a preselected vertical load on the tire, and recording the outputs from the
onboard instrumentation. For antiskid tests, the brake was actuated by a pneu-
matic piston at the pilot metering valve, which gave full pedal deflection or
maximum braking, and the antiskid system modulated the braking effort. The
runway surface condition was essentially uniform over the entire length; the
brake was applied the full distance and was released prior to carriage
arrestment. .

In addition to antiskid braking tests, single-cycle braking tests were
made without antiskid protection. These single brake cycles consisted of
applyving sufficient brake pressure to bring the tire from a free-rolling condi-
tion to a locked-wheel skid and then releasing the brake to allow full tire
spin~up prior to the next cycle. For single-cycle braking, the runway surface
was divided into three sections (dry, damp, and flooded), and brake pressure
was applied by triggering devices at each section along the test track.

The nominal carriage speeds for both types of tests ranged from 40 to
100 knots and were measured approximately midway along the runway where, after
initial acceleration, the carriage was coasting through the test section, with
some speed decay due to carriage wheel friction, air drag, and the braking of
the test tire. Tire vertical loading was maintained hydraulically and ranged
from approximately 58 kN (13 000 1bf) to 120 kN (27 000 1bf), which represented
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a nominal landing weight and a refused take-off weight, respectively, for a
single main wheel of the DC-9. Tests were run at tire yaw angles from 0° to
12°. For most test runs, nominal brake-system pressure was the normal airplane
system pressure of 21 MPa (3000 psi), but some tests were made at system pres-
sures of 14 MPa (2000 psi) and 10 MPa (1500 psi).

Data Reduction

All data were recorded on analog magnetic tape filtered to 1000 Hz.
Except for the ac alternator signals, all analog data were then filtered
through a low pass filter (cutoff frequency of 60 Hz) and digitized at
250 samples/sec. Time-history plots used in the data analysis and those in the
appendix are plotted at 50 samples/sec. From these digitized data, direct mea-
surements were obtained of the carriage speed, the braked-wheel angular veloc-
ity, the skid signal generated by the antiskid system, the brake pressure and
torque, the drag force Fy (sum of two beams), the side force Fy, the verti-
cal force applied to the tire P, (sum of two beams), and the accelerations of
the dynamometer. The instantaneous vertical-, drag-, and side-force data were
corrected for acceleration effects and were combined to compute both the
instantaneous drag-force friction coefficient Ug parallel to the direction
of motion and the side-force friction coefficient Uy perpendicular to the
direction of motion. The load transfer between the two drag-force beams
(fig. 7) provided a measure of the alining torque about the vertical or steer-
ing axis of the wheel. The braked-wheel dc generator signal was converted to
wheel speed, which was combined with carriage speed to yield wheel slip veloc-
ity and slip ratio. Time histories of some of the measured parameters for a
typical antiskid braking test are presented in figure 9(a). These plots start
just prior to wheel spin-up and end approximately 2 sec after the release of
brake pressure. To minimize tire wear on some dry runs, especially at the
higher yaw angles, the runway was flooded from the brake-pressure release point
for the remainder of the test, as is noted in figure 9. Data acquired when the
tire operated on this flooded section were not used in this report. As pre-
viously mentioned, the vertical and drag forces are each a summation of two
data channels, with corrections made for acceleration effects. The time his-
tories of figure 9(b) are the parameters calculated from the data of fig-
ure 9(a). Although brake pressure is a measured parameter, it is included in
figure 9(b) to serve as a reference.

In most cases, the friction-coefficient traces were not as smooth as the
pressure and torque traces, and a study was made to determine whether the
traces should be faired prior to obtaining values of Ug max- A run in which a
known abrupt change in U3 occurred was chosen for this study to determine the
maximum frequency response requirement. Figure 10 shows the drag-coefficient
trace from a run in which the tire experienced an abrupt change in friction
coefficient during transition from a dry to a flooded surface. Fiqure 10(a)
is the raw data showing all the 250 digitized points/sec (At = 0.004). Fig-
ure 10(b) is the same raw data, but only every fifth point is plotted
(At = 0.02). A least-squares fairing technique was used on the raw data
digitized at 250 points/sec, and the effects of four different order poly-
nomials are shown in figures 10(c) to 10(f). The least-squares fairing tech-
nique used in reference 12 to smooth acceleration data was employed. As can be
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seen in figures 10(c) to 10(f), different frequency responses can be obtained
by varying the polynomial order of the least-squares fairing (i.e., from 4 Hz
in fig. 10(c) to 24 Hz in fig. 10(f)). Data in the vicinity of the transition
from a dry to a flooded surface in figure 10 (see circled area in fig. 10(f))
are expanded and presented in figure 11. When no fairing is made, the data in
figure 11(a) at At = 0.004 sec indicate that the friction transition occurs
over a 0.03-sec interval, and the data at At = 0.02 sec show a 0.05-sec
interval. It is believed that the abrupt friction changes shown in this run
actually occur, and any fairing that might be used must be able to respond to
this abrupt friction change. The least-squares fairing of first-, third-, and
fifth-order polynomials gave intervals of 0.12 sec, 0.09 sec, and 0.06 sec,
respectively (figs. 11(c), 11(d), and 11(e)). Only when a seventh-order
polynomial was used did the interval of the friction transition (0.04 sec)
approach the response that occurred when no fairing was used. Since the
seventh—-order trace has characteristics very similar to the unfaired trace at
At = 0.02 sec, it was deemed unnecessary to fair the data; consequently, none
of the time-history data appearing in this report have been faired.

DEFINITIONS

An assessment of the behavior of an antiskid braking system subjected to
a wide variety of operational conditions requires careful consideration of many
variables. Four methods are used in this paper to analyze the behavior of this
antiskid braking system, and these methods are based upon the following param-~
eters: brake pressure, brake torque, tire friction coefficient, and the stop-
ping and cornering power generated by the antiskid system. The development of
the parameters used to describe the antiskid-system behavior is discussed in
the following paragraphs.

Brake Pressure

One method of determining antiskid-system behavior is to compare the aver-
age brake pressure p to the maximum brake pressure Emax developed by the
system. This method is defined in references 13, 14, and 15 as a comparison of
the area under the brake-pressure time history with the area beneath a pressure
profile obtained from the envelope defined by the peaks in the brake-pressure
time history. It is noted in reference 13 that an examination of the wheel-
speed time history must show sufficient variations in both magnitude and fre-
guency to demonstrate that the brake is not torque limited. According to ref-
erence 14, this method of study may be open to objection, especially for rate
threshold systems, because the threshold rate may be lower than the maximum
attainable deceleration, or the pressure may continue to increase while the
wheel is spinning down. Furthermore, mechanical lags in the brake may not
allow the brake-pressure time history to coincide with the drag-force-friction-
coefficient time history. However, this process can be applied to the analysis
of airplane test data and may prove helpful for comparison purposes (ref. 14).

Typical examples of the relatively smooth brake-pressure trace are shown
in figure 12. The average pressure p developed by the antiskid system dur-
ing a given test is defined by the expression



- 1 te
te - to to

where t, and tg, identified in figure 12, enclose the time interval over
which p is measured. The time t, represents the point at which the brake
pressure neared the maximum system pressure or the point where the first skid
occurs. The time tg is taken just prior to brake release at the end of the
test section. The average pressure is computed for each braking test by numer-
ical integration techniques. The maximum pressure §max is derived in much
the same way as 5, except that the dashed curves in figure 12 that are

formed by joining the straight line segments between the pressure peaks are

used.

The slope of the least-squares line through the origin, which fairs the
data when p is plotted as a function of ppay, is defined as the pressure
braking-behavior index Bp p-

Brake Torque

A second indication of antiskid-system behavior is the ratio of the aver-
age brake torque T to the maximum torque imax developed during a test
(refs. 13 and 15). 1In many test programs, it is difficult to measure the brake
torque; hence, torque is not commonly used to study antiskid-system behavior.
Fortunately, the instrumented dynamometer used in this investigation gives a
direct and independent measure of brake torque. According to reference 16, the
relationship between brake torque and friction forces is more easily defined
than the relationship between brake pressure and friction forces. This rela-
tionship, described fully in reference 2, is

Torque = Fyh + F,d - Io (2)

and indicates that brake torque is defined by a linear combination of moments
and thus cannot be uniquely defined by the product of drag force Fy and its
moment arm h. When the tire operates at a fixed slip velocity such that «
becomes negligible and d is relatively small, then the torque may more
closely reflect the drag-force friction coefficient. 1In most cases, however,
antiskid cycling results in rapid wheel-speed changes and significant shifts d
in the fore and aft position of the tire footprint center of pressure. Thus,
peaks in the brake-torque time histories may not coincide with the peaks in the
Ug time histories; however, the brake-torque time histories for this antiskid
system are relatively smooth (see fig. 12), and the torque ratios are presented
as an independent method to study antiskid behavior.

The average brake torque T developed by the antiskid system during a

given test is defined by an expression similar to that for p. This
expression
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was also computed from measured torque time histories by numerical integration
techniques. The maximum torgque imax was derived in the same way as the aver-
age torque except that the dashed curves in figure 12 that are formed by join-
ing straight line segments between the torque peaks are used.

The slope of the least-squares line through the origin, which fairs the
data when T 1is plotted as a function of Tpay, is defined as the torque
braking-behavior index Bb,T-

Friction Coefficients

Drag-force friction coefficients.- Many references acknowledge the exis-
tence of a peak or maximum value of drag-force friction coefficient. (See
refs. 16 to 26 for examples.) Most antiskid systems actively seek this peak
friction coefficient or are designed to operate within a relatively narrow
range of slip velocities or slip ratios in which this peak is assumed to occur,
thus providing maximum airplane deceleration (ref. 27). Accordingly, refer-
ence 13 defines the brake-pressure and torque ratios as indirect indications of
antiskid-system behavior and regards the ratio of average developed to maximum
achieved ground reaction forces due to braking effort as a direct indication of
the antiskid-system braking behavior. However, friction data can be more dif-
ficult to analyze.

During this investigation, the antiskid system exhibited two distinct
response modes. Response mode A is defined as antiskid cycling with well-
defined incipient skid points, as shown in figure 12(a). Response mode B is
defined as antiskid cycling without well-defined incipient skid points, as
shown in figure 12(b). Mode A response has been reported frequently in the
literature. (See refs. 1, 2, and 6 for examples.) 1In this study, response
mode A is generally associated with the new tires at yaw angles of 00 and 3°©
and represents approximately 50 percent of the data. When response mode A was
observed, values of Ha maxr denoted by the circles in figure 12(a), were mea-
sured near the incipient skid points. Using incipient skid points for obtaining
Ha, max (see refs. 1, 13, 15, 22, and 25 for examples) is a well-established and
accepted method.

Mode B response was reported previously in reference 7. 1In this investi-
gation, response mode B is associated with the worn tire and with the higher
vaw angles. This type response is probably the result of the interaction
between the antiskid cycling frequency and the tire mechanical properties. The
possible effect that this interaction may have on the shape of the U wvs slip
curve and hence the Mg max incipient skid relationship is shown in refer-
ences 1, 6, and 7 and is discussed in some detail in reference 28. Since
response mode B generally precluded determination of Mg,max from incipient
skid points, an alternate approach was employed based upon fixed time incre-
ments. For this method, the U3 time history was divided into uniform time
increments and the apparent Ha,max value nearest each time line was measured
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(the last seven circled points in fig. 12(b)). These Ug pax Values were
occasionally supplemented by data from well-defined incipient skids within the
time history. (See, for example, the first circled data point in fig. 12(b).)

It should be noted that the distinction between response modes A and B
is only made with respect to the friction-coefficient data. The pressure and
torque data were always treated as mode A data.

The magnitude of Hg,max during a test depends upon the local runway sur-—
face texture and the wetness condition, both of which can vary along the length
of the test section. The temperature of the tire tread may also be a contrib-
uting factor. To assess the system braking behavior, it was necessary to
assign a single value to the maximum achieved drag-force friction coefficient
for each run (in light of all the differences observed, for example, in
fig. 12). The values of U3, max developed by the braking system throughout
an individual run were averaged, and this value is denoted by Hq,max in fig-
ure 12. This averaging procedure differs slightly from the integrated averag-
ing techniques used for the pressure and torque data (refs. 13, 15, and 29);
however, it will be subsequently shown that there is good agreement among the
three sets of data. Values of g pax are not available for torque-limited
braking tests because, in those cases, the maximum friction level could not be
confirmed. (Torque limited in this investigation refers to a situation where,
for a given supply pressure, the brake torque is insufficient to cause a spin-
down of the tire.) It is apparent that no antiskid cycling occurs when the
brake is torque limited.

The average drag-force friction coefficient Ug developed by the antiskid
system during a given test is defined by the expression

- 1 ‘s"tf q @
g = —— Hg dt )
te - b to

and was computed for each braking test with the use of numerical integration
techniques.

The drag-force friction coefficient that is observed when there is no
braking results from the tire rolling resistance and is assumed to remain con-
stant throughout a test run; this coefficient is labeled U, in figure 12.

For those tests on flooded surfaces, U, also includes the resistance attrib-
uted to fluid drag (ref. 2). When the ratio is computed of average developed
Ug to maximum achieved drag-force friction coefficient Mg, maxs Hy is sub-
tracted from both the numerator and denominator to isolate the friction coeffi-
cient attributed to the braking effort.

The slope of the least-squares line through the origin, which fairs the

data when Ug - M, 1is plotted as a function of U3, max ~ Mre is defined as
the braking-friction behavior index By, p-
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Side-force friction coefficients.- Usually the maximum side-force friction

coefficient ﬁs,max for a yawed-wheel braking test was obtained when the

vawed wheel was freely rolling prior to brake application but after spin-up
transients, as shown in figure 12(a). (See refs. 23 and 30 for examples.)
Occasionally, however, the variability of g during a run was so great that
an alternate method, illustrated in figure 12(b), was used. For this method, a
number of U, max values were obtained during the braking portion of the run
near points of full wheel-speed recovery, which indicated a momentary relaxa-
tion of the braking effort (five circled points in fig. 12(b)). These Ug, max
values were averaged, and this value is denoted by Ug max in the figure.

The expression for the average side-force friction coefficient developed during
braking

- 1 j'tf 3
Hg = — Hg dt (5)
tf - to Y

was computed by numerical integration techniques for each yawed-wheel braking
test.

The slope of the least-squares line through the origin, which fairs the
data when 1g is plotted as a function of Ug pax, is defined as the
cornering-friction behavior index Bc,F-

Power Terms

As noted in reference 6, the behavior of an antiskid system can also be
expressed in terms of the gross stopping power developed by the braking system
and by the stopping and cornering power dissipated by the tire. These various
power terms are defined in reference 6 in terms of the carriage speed V, the
total drag force Fy parallel to the wheel plane, the side force FY perpen-
dicular to the wheel plane, the vaw angle V¥, and the slip ratio S. Time his-
tories of some of these variables during a typical antiskid braking test are
presented in figure 13. Slip ratio is the instantaneous ratio of slip velocity
of the braked wheel (V - wr) to the carriage speed V and is given by the fol-
lowing equation:

V - Wr
g = (6)
v

where r for the test tire was computed from the unbraked rolling distance and
wheel-revolution count for each run. The value of r varied from 0.466 to
0.488 m (1.53 to 1.60 ft), depending upon the various combinations of tire ver-
tical load and speed. The following expressions are defined over the interval
between t, and tg in the figure.

13



Gross stopping power ..— The gross stopping power Pq,q developed by the
antiskid system during a braking test is derived from forces opposing the
direction of motion and is a measure of the overall braking effort. The
expression for that power is

J

te
P3,g = jﬂ (Fy cos ¥ + Fy sin )V dat (7)

tr - to to

where Fy cos U + Fy, sin U converts the measured drag and side forces noted

in figure 13 to a single drag force opposing carriage motion. The product of
velocity and time yields the distance through which the force acts and com-
pletes the work equation. Dividing the work by the duration provides a measure
of the power being generated.

Tire stopping power.- A measure of the stopping power dissipated by the
tire Pq,¢ is given by

1 te
Pg, ¢ = —— Jﬁ [(FX cos ¥ + Fy sin Y)VS + Fy sin V(1 - S)V] dt (8)

tf - to to

where the carriage speed is multiplied by the slip ratio to obtain the slip
velocity (relative speed between tire and pavement). The last term in equa-

tr
tion (8), 'J“ Fy sin ¥(1 - S)V dt, is an estimate of the work dissipated by
to
the rolling resistance, which is attributed to a yawed rolling tire. The value
of Pg,t 1is thus an indicator of the tread wear associated with the braking
effort.

Tire cornering power .- The cornering power dissipated by the tire Pe,t
can be closely approximated by the expression

te
jr (Fy cos ¥ - Fy sin §) (1 - S)V sin { 4t (9)

where F,, cos U - Fy sin ¥ converts the measured side and drag forces to a
single side force perpendicular to the direction of motion and where (1 - S)V
is the braked wheel speed which, when multiplied by sin ¥, yields the tire
lateral velocity. The value of Pe,t is an indicator of the tread wear asso-
ciated with the cornering effort.

14




RESULTS AND DISCUSSION

Pertinent data obtained from all the antiskid braking tests are presented
in table I, together with parameters which describe each test condition. 1In
addition, time histories of key parameters from all the tests are presented in
the appendix. The tabular data and the appendix time histories are given for
the convenience of the user in plotting the data in ways other than those pre-
sented in this report. The following sections describe the braking-system
behavior, the tire frictional behavior under skid control, and the antiskid-
system behavior under a variety of operating conditions.

Braking-System Behavior

To study the behavior of the antiskid system, it is first necessary to
establish the response characteristics of the braking system and its compo-
nents. The following paragraphs describe the pressure-torgque response, the
antiskid-system electronic and hydraulic response, and the braking-system
response to transient runway friction conditions.

Pressure—-torque response.~ The relationship between brake pressure and
brake torque is shown in figure 14(a) where arrowheads are used to indicate
whether pressure is increasing or decreasing for the initial braking cycles.
The figure clearly shows that the hysteretic nature of the pressure-torque
relationship for this friction condition results in substantial variations
in the brake torque for a given brake pressure. This characteristic is most
notable during the first brake cycle when the temperature of the brake is
essentially the ambient temperature and would suggest that the temperature of
the brake has a significant influence on its ability to develop torque. For
the test shown, most of the cycling occurred at brake pressures between 10 and
14 MPa (1500 and 2000 psi), but an occasional wheel spin-down caused large
fluctuations in both the brake pressure and torque.

The large hysteresis loop associated with the initial brake cycle may
weigh more heavily in the determination of the antiskid-system braking behavior
during these track tests than during an actual airplane braking stop. During
the track tests, several runs are necessary to cover a representative speed
range and this large initial hysteresis cycle is repeated for each run; how-
ever, during an airplane braking stop, this initial cycle might appear only
once.

Large hysteresis loops are also noted during normal antiskid cycling when
the brake pressure is presented as a function of the skid signal (fig. 14(b)).
The data presented in figure 14 illustrate typical dynamic behavior of the
braking system during antiskid operation and provide some insight into the
difficulties of designing efficient antiskid braking systems.

Electronic and hydraulic response.- Time histories from run 34 are pre-
sented in fiqure 15 to illustrate the electronic and hydraulic response charac-
teristics of the antiskid system. The electronic response can be described by
examining both the test wheel-speed sensor (ac input signal) and the same sig-
nal after it passes through an ac-dc converter within the antiskid control box.
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Plots of these signals and the corresponding skid-signal and brake-pressure
traces are presented in the first four time histories of the figure. Data for
this transition run from a dry to a flooded runway surface indicate essentially
no time lag between the incipient skid point and the initiation of the skid
signal and subsequent brake-pressure dump.

The hydraulic response characteristics of the antiskid system can be
described by examining the hydraulic pressure at the antiskid control valve and
at the brake. Typical time histories of these signals and the corresponding
brake torque are also presented in figure 15. Although approximately 2.2 m
(7.25 ft) of the hydraulic line (inside diameter of 0.810 cm (0.319 in.)) and a
line fuse separate the two pressure transducers, no measurable hydraulic lags
can be detected between them since the pressure response spikes of each occur
at approximately the same time. However, approximately 50 msec is required for
a complete pressure-torque dump. This duration closely corresponds to the time
noted on the wheel-speed trace of figure 15 for the tire to lock up following
transition from a dry to a flooded section of the runway.

Response to runway friction transition.- The adaptive characteristics of
the antiskid system are illustrated by time histories of the wheel speed, skid
signal, brake pressure, and drag-~force friction coefficient as presented in
figure 16 for two transient runway friction conditions. The response of the
braking system to a single transition from a dry to a flooded runway is pre-
sented in figqures 16(a) and 16(b) for nominal carriage speeds of 54 knots and
94 knots, respectively. At both test speeds, the brake pressure reached a nom-
inal system operating pressure of 21 MPa (3000 psi) and was modulated by the
antiskid system on the dry surface. Upon entering the flooded section, the
wheel in both tests rapidly decelerated to a deep skid, as noted by the immedi-
ate reduction in wheel speed. At a carriage speed of 54 knots, the antiskid
system reacted quickly to permit the wheel to recover from the skid, and the
remainder of the braking test was conducted with proper antiskid protection.

As shown in figure 16(b), at a carriage speed of 94 knots, the wheel did not
recover but continued to skid even though the antiskid system responded prop-
erly and released all brake pressure. The predicted spin-up hydroplaning speed
for the tire, based upon a tire inflation pressure of 0.97 MPa (140 psi), was
91 knots (ref. 5), which is equivalent to a wheel speed of approximately

15.6 rps; thus, once the tire had spun down, insufficient torque was being
developed between the tire and the pavement to spin the tire up.

Time histories of test runs that were selected to illustrate the response
of the braking system during the transition from a flooded to a dry runway
surface are presented in figures 16(c) and 16(d), for nominal carriage speeds
of 56 knots and 94 knots, respectively. In both tests, the wheel was spun up
to carriage speed on a dry surface prior to entering the flooded test section,
and the brakes were applied at or near the start of the flooded section. Fig-
ure 16(c) shows that, at 56 knots, the skid signal bleeds off after the initial
skid to allow a reapplication of brake pressure until, at about 4 sec, the
wheel speed again decreases to the point that the antiskid system modulates
the brake pressure on the flooded portion of the runway. Upon reaching the dry
section, the brake pressure increased almost linearly for approximately 4 sec
at a rate commensurate with the skid-signal bleedoff, which is generated by the
pressure-bias-modulation memory circuits. Just prior to the end of the test,
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9.5 sec into the run, brake pressure was modulated due to a slight spin-down of
the test wheel, which indicated cycling had recommenced.

For the test run at a nominal carriage speed of 94 knots (fig. 16(d)), the
wheel commenced to spin down on the flooded section before brakes were applied
due to dynamic tire hydroplaning. The calculated spin-down hydroplaning speed
for the tire in this test, based on an inflation pressure of 0.97 MpPa (140 psi),
was 106 knots, which is equivalent to a wheel speed of approximately 18.2 rps
{ref. 5). The antiskid system acted as designed and produced a saturated skid
signal which prevented the application of pressure to the brake. Upon reaching
the dry section, the wheel rapidly spun up to the carriage speed, and approxi-
mately 0.75 sec later, the brake pressure increased to 14 MPa (2000 psi).
Beyond 3.8 sec, the brake pressure increased gradually for 1.25 sec toward
21 MPa (3000 psi) but was controlled again by the decay rate of the residual
skid signal that is a function of the pressure-bias-modulation circuit of the
antiskid system.

Tire Frictional Behavior Under Skid Control
The runway/tire maximum drag- and side-force friction values are discussed
here to provide a quantitative measure of the surface condition and for use in
updating tire friction models with data from realistic antiskid operating

conditions.

Effect of test parameters on maximum drag-force friction coefficient.- The

average maximum drag-force friction coefficient id,max as developed by the
unyawed tire under dry, damp, flooded, and natural rain conditions is presented
as a function of carriage speed in figure 17. The fairings in the figure are
linear least-squares curve fits of the data. For these tests, the damp and
natural rain wetness conditions provided similar friction characteristics. As
expected, values of ﬁd,max for the wet runways are substantially lower than
those for the drvy runway, and the difference is greater for the flooded surface
than for the damp surface, particularly at the higher speeds. An extrapolation
of the linear curve fit of ﬂd,max for the flooded condition is seen to
approach negligible values near the predicted tire spin-down hydroplaning speed
of 106 knots (ref. 5). Also noted in the figqure is the maximum value of the
drag-force friction coefficient, 0.78, which was predicted from the empirical
expression developed in reference 31 for the test tire operating at very low
speeds. It is apparent from the fairings that the dry data for ﬁd,max would
fall below this prediction if extrapolated to zero speed. The reason for this
difference can be explained by examining the data of figure 18, where values of
Ha, max that were obtained solely during the first wheel spin-down at the ini-
tial brake application (for the tests that were not torque limited) are pre-
sented as a function of carriage test speed. These values represent the maxi-
mum friction coefficients developed from an unheated tire on a dry runway and
are faired by a straight line that corresponds to a least-squares fit of the
data. The faired line agrees closely with the value of g pax that was
empirically determined from reference 31 for cold tires during a single braking
cycle. Por comparison purposes, the fairing of the average values of ﬁd,max
obtained over the entire duration of each of the five dry test runs (fig. 17,
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s0lid line) is also presented in the figure. The maximum friction developed
during the initial brake cycle exceeded the average maximum developed through-
out each of the tests, particularly those conducted at speeds below 80 knots.
This difference may be attributed to high tread temperatures that are generated
as the antiskid system maintains the tire at a relatively constant slip ratio.

An example of the tire surface temperatures generated during antiskid
cyecling is shown in figure 19. An optical pyrometer was focused on the center
of the tread in a region approximately one-sixth of a revolution aft of the
tire-pavement contact area; thus, the temperature was measured as the hot foot-
print area rotated into the field of view of the pyrometer. Due to instrument
damage, temperature data were obtained for only one run, and data below 110° C
(230° F) are not plotted since the pyrometer did not respond to values below
this level. The wheel speed and drag-force friction coefficient are presented
in the figure to show their relationship with the tire surface temperature.
During braking, the tire tread temperature experienced six distinct peaks which
correspond to six skid cycles and, after one revolution of the tire following a
skid cycle, which required roughly 0.1 sec, the tire had cooled appreciably.

The friction data of figure 17 were obtained at a vaw angle of 0°. The
fairings of these data for dry, damp, and flooded surface conditions are recon-
structed in figure 20, together with corresponding data obtained at yaw angles
of 39, 69, 99, and 129, to show the effect of yaw angle on ﬁd,max° The fig-
ure shows that the effect of yaw angle is dependent_upon the surface condition
and forward speed. With the introduction of vaw, Hgq,max is reduced on the
dry and damp surfaces but is relatively unaffected when the surface was flooded.

The effect of tiEe tread wear on ﬁd,max is presented in figure 21, in
which the values of Ug,max for tires having new and worn treads are plotted
as a function of carriage speed for three test surface conditions. The new
tread data were again obtained from the faired curves of figure 17. The data
indicate that when the new tread is replaced by a worn tread, there is no deg-
radation in ud max ©on the dry surface, but there is a reduction on the damp
and flooded runway surfaces. These trends are in reasonable agreement with
similar trends noted in references 2, 6, and 7.

Effect of test parameters on maximum side-force friction coefficient.- The
maximum side~force friction coefficients developed by the yawed rolling tire
under dry, damp, and flooded conditions are plotted as a function of carriage
speed in fiqure 22. The fairings in the figure are linear least~squares curve
fits of the data. As discussed previously, these coefficients were generally
measured during the free-rolling portion of the run and, for the wet runway
surfaces, are lower than those for the dry runway, with the difference becoming
greater with increasing water depth and speed. As expected, the values of
HUg,max ©n the dry and damp runway surfaces generally increase with increasing
yaw angle, at least for yaw angles up to 9°. On the flooded surface, however,
this trend, although still present, was not as distinctive, and the values of
Hs,max at vaw angles of 3° and 6° are shown to approach zero as the speed
approaches the predicted tire spin-down hydroplaning speed of 106 knots
(ref. 5).
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The effect of tread wear on lUg max 1is shown in figure 23 where the val-
ues of Hg max at a yaw angle of 62 on dry, damp, and flooded runway surfaces
are plotted as a function of carriage speed. The new tread data were obtained
from the faired curves in figure 22 for a yvaw angle of 6°. On the dry surface,
the worn tread condition gave higher side-force friction coefficients than the
new tread condition (a trend that was also noted in refs. 2, 6, and 7). On the
flooded surface, however, there was a definite loss in side-force friction when
the new tire tread was replaced by a worn one. For the damp surface, the data
seem to indicate an increase in U5 max with increasing speed for the worn
tire, but this may be due to varying dampness conditions between runs.

Interaction between braking and cornering.- Typical tire friction response
to antiskid braking on dry and flooded runway surfaces (interaction between
braking and cornering) is presented in figure 24. The drag- and side-force
friction coefficients U3 and g are plotted as a function of slip ratio for
the tire yawed to 6° and operating at a nominal carriage speed of 77 knots.

The data presented in the figure illustrate the irregular nature of the fric-
tion coefficient to which the antiskid braking system must respond. The appar-
ently random perturbations may result from a combination of such factors as
small fluctuations in the tire vertical 1load due to runway unevenness, flexi-
bility in the wheel support which would be reflected in the measured drag and
side forces, variations in the runway surface texture, tire and brake tempera-
tures, and the spring coupling provided by the tire between the wheel and the
pavement. Reference 28 discusses some of these factors in detail.

The data presented in figure 24 also illustrate the traction losses asso-
ciated with flooded runway operations. For example, on the dry runway, the
maximum value of Uy is approximately 0.55, but it never exceeds 0.18 on the
flooded runway. A similar loss is noted in the maximum side-force friction
coefficients. The figure also demonstrates the deterioration in tire cornering
capability with increased braking effort (higher slip ratio). The value of g
is reduced approximately 70 percent on the dry runway at a slip ratio of only
0.3 and is reduced from 0.1 to a negligible value at that same slip tatio on
the flooded surface. These cornering reductions during the braking cycles are
consistent with those noted for similar antiskid braking tests reported in ref-
erences 1, 6, and 7 and further illustrate the cornering/braking dilemma faced
by antiskid designers.

Effect of cyclic braking on maximum drag-force friction coefficients.- So
far, the friction data presented herein were derived from cyclic brake opera-
tions. However, there is in the literature a large body of tire friction data
available which were obtained under single-cycle conditions, and a discussion
of the two data sets is appropriate. A comparison of values of ug ,max Mmea-
sured during single-cycle braking tests made without antiskid protectlon and
the average of corresponding values measured under the same test conditions
with the antiskid system operational is presented in figure 25. The single-
cycle data were obtained approximately 2 yr prior to the present antiskid
braking tests and were used previously in references 6 and 7. In figure 25,
data are presented separately for dry, damp, and flooded test conditions and
for all the test conditions combined. These data include coefficients for
tests at similar speeds, vaw angles, vertical loads, and for worn as well as
new tread configurations. The data for each test condition are faired by a
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least-squares straight iine through the plot origins. The data indicate that
the maximum drag-force friction coefficients obtained from the single-cycle
braking tests tend to be higher than the average maximum coefficients developed
by the antiskid system on all the test surfaces, with the greatest difference
occurring on the flooded surface. When the data for all three surface wetness
conditions are compared simultaneously, the least-squares curve fit indicates
that the single-cycle data are approximately 25 percent higher than the maximum
drag-force friction coefficient developed by the antiskid system. There are
several possible explanations for these trends, ranging from surface weathering
and traffic polishing to tire heating associated with cyclic brake operations.
However, the implication is quite clear that caution should be exercised in any
estimate of antiskid-system braking behavior that is based solely upon M3, max
values obtained from single-cycle tests.

Antiskid-System Behavior Analysis

Braking behavior.- In this section, four terms are used to describe the
extent of the braking effort and to examine the antiskid behavior: (1) the
brake-pressure behavior index Sb’ , which assesses the ability of the system
to control brake pressure; (2) the brake-torque behavior index Eb,Tr which
assesses the system torque control; (3) the friction-behavior index Bb,Fr
which measures the ability of the antiskid system to use the apparent maximum
friction coefficient at the tire/runway interface; and (4) the total stopping
power §d,g that is developed by the antiskid system.

Presented in figure 26 are plots of 5 versus Emaxr T versus %maxr
and Uq - Wy versus Hq max ~ Hr. Data are plotted for all braking tests
except those which were torque limited throughout the entire run, those involv-
ing tire hydroplaning, and those performed to examine the effects of a runway
friction transition. 1In each case, the dry data and the wet data are plotted
separately. The different surface wetness conditions are denoted by different
symbols, but®*no distinction is made for the various test parameters such as
carriage speeds, vaw angles, and vertical forces. The solid line in each plot
represents the line of perfect agreement between the average developed and
maximum achieved behavior parameter and has a unit slope. The dashed line in
each plot is the least-squares fit passing through the plot origin. The slope
of each dashed line represents the average braking-behavior index for each data
set. (See fig. 16 of ref. 26.)

On the dry runway surfaces, the average braking-behavior indexes Bb
determined from the pressure, torque, and friction ratios vary between 0.91
and 0.93, a difference of only 2 percent. On the wet runway surfaces, the
variation in Bb is between 0.68 and 0.71, a difference of approximately
4 percent. A comparison of the Eb values for the wet runway surfaces with
the Bb values for the dry runway surfaces indicates a reduction of between
23 and 25 percent in the braking-behavior indexes. Thus, figure 26 shows that
the antiskid braking system suffers a degraded braking-index level on the wet
runway surfaces, in addition to the obvious reduction in friction coefficient.
The data also indicate that the antiskid braking-behavior indexes derived from
the three parameters give essentially the same results. This correlation may
not be exhibited by other antiskid systems; however, it does indicate that, for
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this antiskid system, the three indexes can be used interchangeably as a mea-
sure of the braking behavior. It should also be emphasized that the braking-
behavior indexes are based upon maximum achieved values of pressure, torque,
and friction which may vary from one antiskid system to another, and any com-
parisons between different antiskid systems based solely upon these indexes may
be technically misleading since there is no common base for comparison.

To isolate the effect that various test parameters have on the pressure,
torque, and friction indexes, data from figure 26 are plotted in figures 27
to 32. Each figure is divided into three parts: (a) pressure indexes,

{(b) torque indexes, and (¢) friction indexes. Each plot includes the line of
perfect agreement and the least-squares fit passing through the origin, from
which the average braking-behavior index Bb is determined. The trends
observed for some test conditions may be influenced by a small sample size.

The effect of speed on braking-behavior indexes is shown in figure 27. On
the dry runway surfaces, the indexes are higher at a speed of 100 knots than at
the lower speeds. On the damp runway surfaces, the opposite trend is observed.
On the flooded runway surfaces, the braking-behavior indexes are reduced when
the carriage speed is increased from 50 to 75 knots, and no data are available
at 100 knots due to tire hydroplaning.

Figure 28 presents the effect of yaw angle on the braking-behavior indexes.
On the dry runway surfaces, these indexes are generally higher at a yaw angle
of 6° than for the other yaw angles. No consistent trends were observed for
the wet runway surfaces.

The effect of variations in the vertical force on the braking-behavior
indexes is shown in figure 29. 1Insufficient data are available to discuss the
effect of vertical-force variations on the dry runway surfaces and are not
plotted. On the wet runway surfaces, however, the data indicate that the
braking-behavior indexes are consistently lower for the light vertical forces.

Shown in figure 30 is the effect of tread wear on the braking-behavior
indexes. On the dry runway surfaces, the indexes are slightly higher for the
worn tire than for the new tire. The opposite trend is generally observed on
the wet runway surfaces. The only exception occurs on the flooded runway when
the braking-behavior index is obtained from the friction ratio (fig. 30(c)),
but this may be due to the small sample number.

Figure 31 presents the effect of system operating pressure on the braking-
behavior indexes. Insufficient brake torque was available to permit antiskid
activity on the dry runway surfaces for the reduced system pressure; thus, only
the wet runway data are presented. On the damp runway surfaces, the indexes
are highest for a system pressure of 10 MPa (1500 psi) and lowest for a system
pressure of 14 MPa (2000 psi). No consistent trends are observed for the
flooded runway surfaces.

Presented in figure 32 is the effect of system response mode on the

braking-behavior indexes. The data indicate that mode B system response pro-
duces significant increases in the pressure, torque, and friction indexes over
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those obtained from mode A operation. This trend is observed for all three
surface wetness conditions.

In summary, the data presented in figures 27 to 32 imply that the braking
behavior of the antiskid system would not be adversely affected by cross-wind
operations (yvaw-angle effects), but might be degraded by excessive wing lift
during the landing roll-out (vertical-force effects). These results also indi-
cate that the antiskid~system braking behavior may be adversely affected by
excessive tire wear on wet runway surfaces. Finally, the data indicate that
the highest braking-behavior indexes are achieved when the antiskid system
operates in response mode B.

The gross stopping power Pd,g (eg. (7)) developed by the antiskid sys-
tem, which is a measure of the overall antiskid braking effort, is listed in
table I for each test condition. Figure 33 presents bar graphs of these data
in terms of §d,gr a numerical average of all the data for a given test con-
dition. For example, the dry, 50-knot bar graph is the average of all dry runs
at 50 knots, including the various yaw angles, vertical forces, tread configu-
rations, and system pressures. Data from torque-limited tests and from tests
involving tire hydroplaning are included in the figure, but no data are
included from tests performed under transient runway friction conditions. As
expected, because of higher available friction coefficients, the gross stopping
power on the dry surface is much higher than that on the wet runway surfaces.
On the dry surface, ﬁd,g increases to a lesser extent with tire vertical
force and with a worn tread configuration. The wheel yaw angle appears to have
little effect. On the wet surfaces, ﬁd, increases with tire vertical
force, decreases with tread wear, and exhibits no substantial change for vari-
ations in carriage speed, brake supply pressure, or vaw angle.

The stopping power dissipated by the tire alone P3,t (eg. (8)) is only a
small fraction of the gross stopping power, but it does provide an indication
of the tread wear associated with the braking effort; thus, the ideal antiskid
system would maximize Pq g4 and minimize Pqg,t. Values of Pg,r are listed
in table I for each test condition. The data are averaged and plotted as bar
graphs in figure 34 to show the effects attributed to test parameter varia-
tions. Data from all tests except those performed to study the effect of a
runway friction transition are included in the figure. The figure shows that
for corresponding conditions, Pq,t is generally higher on the dry surface
than on the wet surfaces except for the 10 MPa (1500 psi) brake supply pressure
tests. On a dry surface, Pg,t increases with carriage speed, yaw angle,
brake supply pressure, and when a new tread is replaced by a worn tread. On
the wet runway surfaces, Pa,t increases with carriage speed, yaw angle,
tire vertical force, and brake supply pressure but decreases when a worn tread
is used. The data in figure 34 indicate that the most severe tread wear occurs
during combined braking and cornering operations on a dry surface.

The ratio of tire stopping power to gross stopping power for each test is
plotted as a function of ﬁd,max in figure 35. Data are not included for
torque-limited tests, for tests performed under transient runway friction con-
ditions, or for tests involving tire hydroplaning. The curves which fair the
data represent a least-squares fit and indicate that the ratio increases
slightly as the surface friction level decreases, perhaps due to hydroplaning
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effects. The figure also shows that the general effect of increasing the
wheel yaw angle is to increase the percentage of the total stopping power dis-
sipated by the tire and to increase tire wear (also suggested by the amount of
rubber deposited on the runway during yawed rolling tests).

Cornering behavior .- Antiskid systems are not designed to maximize corner-
ing performance since good cornering is not compatible with heavy braking, but
cornering is important for directional control, especially when cross winds are
present.

Presented in figures 36 to 38 are plots of ﬁs versus ﬁs,max to show
the effect several test parameters have on the cornering-behavior indexes Bc.
The test parameter levels and surface wetness conditions are plotted separately.
Each plot includes the line of ideal behavior and the least-squares fit passing
through the plot origin from which the average cornering-behavior index is
obtained. It should again be emphasized that trends observed for some test
conditions may be influenced by a small sample size.

The effect of vaw angle on the cornering-behavior indexes is shown in fig-
ure 36. Data are presented for all three wetness conditions at 3° and 6°,.
Data taken at yaw angles of 9° and 12° are shown for the damp runway surfaces
only. 1In general, these indexes are somewhat higher on the dry runway surfaces
than on the wet runway surfaces for vyaw angles of 3° and 6°. The cornering-
behavior indexes are shown to decrease when the yaw angle is increased from
30 to 6° for each wetness condition. 1Indexes from the 9° and 12° data are
slightly higher than 0.5.

Figure 37 shows the effect of carriage speed on the cornering-behavior
indexes. On the dry runway surfaces, the indexes are relatively insensitive to
variations in carriage speed. On the wet runway surfaces, the indexes decrease
with increasing carriage speed. At 100 knots on the flooded runway surfaces,
hydroplaning effects have completely eliminated the tire cornering capability.

Presented in figure 38 is the effect of tread wear on the cornering-
behavior indexes. All three surface wetness conditions show a decrease in the
indexes when a new tire is replaced by a worn tire, and this decrease is much
more pronounced on the wet runway surfaces.

The cornering power dissipated by the tire Pc,t (eg. (9)) not only is
indicative of the overall cornering capability of the tire during the antiskid
controlled braking, but also provides an indication of the increased tread wear
associated with the steering effort. The effects of test parameter variations
on §c ¢ are presented in figure 39 as bar graphs. The data indicate that
Po,t values are, as expected, considerably higher on the dry surface than on
the wet surfaces and increase with yaw angle and speed on both surfaces. The
value of Pc,t was higher for the worn tread conditions on the dry surface
and was higher for the new tread condition on the wet surfaces. Although Bc )
decreased with increasing yaw angle (fig. 36), the values of Pc 't increased
substantially when the vaw angle was increased from 3° to 12° (flg. 39); thus,
both power terms and behavior-index terms are needed when studying the charac-
teristics of antiskid systems.
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CONCLUDING REMARKS

An experimental investigation was conducted at the Langley aircraft land-
ing loads and traction facility to study the braking and cornering response of
a slip-velocity-controlled, pressure-bias-modulated aircraft antiskid braking
system. The investigation, conducted on dry and wet runway surfaces, utilized
one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9
series 10 airplane.

Results from the experimental investigation indicate that:

1. During maximum braking, average braking-behavior indexes based upon
brake pressure, torque, and drag-force friction coefficient developed by the
antiskid system were higher on the dry surfaces than on the damp and flooded

surfaces.

2. On the wet surfaces, these indexes were reduced with lighter vertical
forces, higher carriage speeds, and when new tire treads were replaced by worn

treads.
-

3. The three braking-behavior indexes agreed with one another and can be
used interchangeably as a measure of the braking behavior for this antiskid
system.

4. These braking-behavior indexes are based upon maximum values of pres-
sure, torque, and drag-force friction coefficient which may vary from system to
system, and any comparisons between different antiskid systems based solely
upon these indexes may be technically misleading.

5. The average gross stopping power generated by the brake system was con-
siderably higher on the dry surfaces than on the wet surfaces.

6. That portion of the stopping power which was dissipated by the tire and
which provided an indication of the tire wear was observed to be greatest dur-
ing combined braking and cornering on a dry surface.

7. The average cornering-behavior index based upon the side-force friction
coefficient developed by the tire under antiskid control was decreased on wet
surfaces, with increasing yaw angle and carriage speed, and when tires with new
treads were replaced by those with worn treads.

8. The interaction between braking and cornering forces indicated that,
during antiskid cycling on the dry runway surfaces, the side-force friction
coefficient was significantly reduced during portions of the braking cycles;
on the flooded runway surfaces, this coefficient was frequently reduced to
negligible values.

9. During the transition from a dry to a flooded surface under heavy
braking, the wheel entered into a deep skid but the antiskid system reacted
properly by quickly reducing brake pressure and performed normally during the
remainder of the run on the flooded surface.
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10. The brake-pressure recovery following transition from a flooded to a
dry surface took 4 sec and was shown to be a function of the decay rate of the
residual skid signal built up by the antiskid system during the initial skid
cycles on the first surface.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 12, 1979
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TABLE I.- SUMMARY OF TEST

Brake Vertical - _
Response [Tire-tread| supply | Yaw Surface load [Nominall _ |_ P Pmax
Run| mode |condition }pressurefangle,| condition speed,| Wg |Hd,max | Mr
deg knots
MPa| psi kN |1bf MPa |psi [MPa |psi
1 A New 21 13000 0 (a) 60{13.4 54 [0.50f 0.66 (0.03111.2|1624/15.1(2205
2 A New 21 3000 0 Dry 60[13.5 74 .58 .66 .03[15.7}2277|18.1{ 2625
3 A New 21 | 3000 0 Dry 65(14.6 70 .58 .66 .02111.311639(13.2{1914
4 B New 21 {3000 0 Dry 62113.9 99 .57 .60 .05(13.8)2002/15.0| 2176
5 A New 20 |2900 0 Dry 84(18.8 43 .54 .61 .04}16.5|2393| 18.8[ 2727
6 New 19 | 2800 0 Dry 83|18.6 99 .45
7 New 20 {2900 0 Dry 97121.8 94 .47
8 A New 21 (3000 0 Damp 60]13.4 56 .20 .33 .03| 4.1 595; 8.2/1189
9 A New 21 {3000 0 Damp 60(13.4 77 .22 .28 -05| 3.3F 479| 5.9 856
10 B New 20 (2900 0 Damp 59(13.31 101 .20 .28 .04 3.7| 537| 4.8| 696
1 A New 20 |2900 0 Damp 82118.5 60 .21 .32 .04 5.3] 769| 9.6/1392
12 A New 21 {3000 0 Damp 83(18.6 77 .24 .32 .04] 5.1{ 740| 6.4] 928
13 B New 21 | 3000 0 Damp 82|18.5 104 .22 .30 -04; 4.9 711} 6.3| 914
14 A New 21 {3000 0 Damp 97|21.9 56 .24 .29 .03 6.9(1001] 9.8}1421
15 A New 21 | 3000 0 Damp 97121.9 75 .21 .27 .02/ 6.3 914 7.9(1146
16 A New 21 3000 0 Damp 97121.9{ 101 .20 .35 .06 5.5/ 798| 8.5/1233
17 A New 21 | 3000 0 Damp 120(27.0 55 .26 ) .02) 9.3|1349({11.0[1595
18 B New 20 12900 0 Damp 120(27.0 76 .22 .27 .03] 6.8f 986 8.211189
19 A New 20 | 2900 0 Damp 120(27.0 102 .18 .26 .03| 5.9| 856] 7.9|1146
20 A New 20 ]2900 0 Flooded 59(13.2 53 .18 .26 .05| 2.8 406| 5.8/ 841
21 A New 21 | 3000 0 Flooded 59(13.3 75 .10 .14 .06) 1.2| 174 3.7| 537
22 New 21 13000 0 Flooded 59113.2 93 .06
23 A New 21 | 3000 0 Flooded 78{17.5 53 .25 .19 .05/ 4.9] 711} 6.2| 899
24 A New 21 13000 0 Flooded 81|18.2 56 .21 .24 .04 4.7| 595f 5.3| 769
25 B New 21 | 3000 0 Flooded 81]18.2 76 12 .14 .05| 2.1} 305 4.0| 580
26 New 21 (3000 0 Flooded 81{18.1 92 .07
27 A New 20 |2900 0 Flooded |[101]22.7 59 7 .22 -04] 4.3} 624| 8.0{1160
28 A New 21 13000 0 Flooded 94{21.2 75 .13 7 .06} 2.4/ 348 4.4| 638
29 New 21 [ 3000 0 Flooded 93(20.9 9 .06
30 B New 20 12900 0 Flooded (128(28.7 53 .25 .29 .06| 7.6{1102] 8.7|1262
31 A New 20 (2900 0 Flooded [125)28.2 74 .13 A7 .06} 3.2| 464| 6.0{ 870
32 New 20 {2900 0 Flooded ([117}26.2 93 .07
33 New 21 [ 3000 0 |Dry/Flooded| 84(18.8 54 .32].58/.23
34 New 21 13000 0 ([Dry/Flooded| 84/18.8 76 .291.57/.16
35 New 21 | 3000 0 |[Dry/Flooded| 83/18.7 94 .26] .53/
36 New 21 [3000 0 |Flooded/Dry| 84(18.8 56 .23 .19/
37 New 20 |2900 0 |Flooded/Dry| 83{18.7 77 61 .13/
38 New 20 (2900 0 |Flooded/Dry| 83(18.7 94 .28
39 A New 20 |2900 0 Rain 82(18.5 55 .18 .36 .03| 5.4 783111.4[1653
40 A New 20 {2900 0 Rain 82118.5 76 .22 .28 .03) 5.7) 827 7.8|1131
41 B New 20 [2900 0 Rain 82/18.5| 103 .18 .24 .04) 4.3| 624| 5.8] 841
42 A New 21 {3000 3 Dry 85119.0 40 .54 .62 -04/15.0/2176(17.4|2524
43 A New 20 [2900 3 Dry 85(19.2 72 .51 .58 -03{16.412379(17.8|2582
44 A New 21 {3000 3 Dry 86(19.4 97 .47 .49 .03(18.5(2683({19.4|2814
45 A New 20 |2900 3 Damp 84/18.9 53 .27 .29 .04} 6.0 870 7.6[1102
46 A New 20 {2900 3 Damp 83)18.7 77 .20 .25 .03) 4.9} 71| 5.9 856
47 A New 20 | 2900 3 Damp 84|18.9;) 102 .19 .31 .03 4.6| 667| 7.1|1030
48 A New 20 {2900 3 Flooded 83118.7 52 .20 .27 .05 4.0} 580| 7.8(|1131
49 B New 20 [2900 3 Flooded 83|18.6 79 .10 .13 .06] 1.6| 232 4.1| 595
50 New 20 [2900 3 Flooded 81118.3 95 .06
51 B New 21 13000 6 Dry 85(19.1 47 .53 .56 .07113.311929114.2 2069

A0ne damp spot on otherwise dry runway.
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CONDITIONS AND RESULTS

Torque
limit,
percent

T Tmax
kN-m| ft-1bf | kN-m| ft-1bf
14.1]10 415|19.3|14 256
17.0)12 557|19.5{14 404
18.8|13 887}21.0{15 512
17.3112 779}18.6|13 739
20.4|15 068§23.3|17 211

6.4 4 727|10.7] 7 904
4.8| 3 546| 7.7] S5 688
5.4 3 989| 6.8; 5 023
7.8 5 761|11.7! 8 642
7.9{ 5 835} 9.1 6 722
7.0 5171 9.0| 6 648
9.9) 7 313113.3| 9 824
9.5 7 017|11.6| 8 568
6.5 4 801|12.5( 9 233
13.3| 9 824(16.8|12 409
11.2] 8 273|12.6| 9 307
8.7| 6 42611.2| 8 273
3.7] 2 733} 6.9| 5 097
.6 433} 3.5] 2 585
8.1] 5 983| 9.3| 6 869
6.5] 4 801 8.9| 1 29N
2.5} 1 847| 4.6| 3 398
6.1 4 506(10.2} 7 534
3.1 2 290] 5.1 3 767
11.6| 8 568(13.7[10 120
4. 3176) 7.4 5 466
7.5| 5 540|13.6(10 046
8.3] 6 131]10.6| 7 B30
5.4| 3 989} 7.3| S5 392
20.6 |15 216|23.2|17 137
20.0114 773|21.2|15 659
19.2114 182[19.7(14 551
9.0{ 6 648}10.8( 7 977
6.9] 5 097} 8.4 6 205
6.4 4 727| 8.0y 5 909
5.91 4 358|10.2{ 7 534
2.0 1 4771 4.2] 3 102
20.0(14 773]20.6|15 216

3N

28
100
100

17

24

85

21

0.20
A7
.18
16
.13
.14
.13
.03

.28

Hs,max

0.24
.22
.20
.18
.20
.21
.18
.05

.43

Average
slip
ratio

Average Gross Tire Tire
slip stopping { stopping|cornering
velocity power power power Hydroplaning| Run
m/sec|ft/sec| kW | hp |kWw |hp kw {hp
3.04 9.96| 835[1120] 99133 No 1
3.52] 11.56{1342]1800{124]|166 No 2
4.12| 13.53{1342{1800{158|212 No 3
4.48| 14.69)1767]|2370}160]215 No 4
3.03 9.95| 984|1320|131({176 No S
2.19 7.20|1864|2500] 83[1M No 6
3.0 9.89|2192|2940[138}185 No 7
2.18 7.15] 350| 469] 25| 33 No 8
2.47 8.11| 530] 711] 39] 52 No 9
2.70 8.87| 612]| 821] 40} 53 No 10
2.30 7.56] 530] 711| 40] 54 No n
2.37 7.78| 776|1040| 54| 73 No 12
3.171) 10.19| 925|1240| 64} 86 No 13
2.05 6.71| 656]| 880| 49| 66 No 14
2.66 8.74| 805{1080] 60| 80 No 15
2.75 9.01| 9621290 75(100 No 16
1.97 6.45! 872(1170| 62] 83 No 17
2.35 7.72}1037|1390| 69| 92 No 18
2.62 8.59(1104(1480] 70| 94 No 19
3.14| 10.29! 289 387{ 34| 45 No 20
12.77] 41.71| 239 320| 79|106 No 1
45.051147.8 182| 244{171)229 Yes 22
3.16§ 10.37| 533§ 7151 65] 87 No 23
2.74 9.00( 479 643 48| 64 No 24
3.95| 12.96] 379} 508 36| 48 No 25
44.191144.98| 276| 370(259{347 Yes 26
2.49 8.16{ S511| 685| 49| 61 No 27
4.50| 14.77] 467| 626) 57| 77 No 28
45.01|147.66| 255| 342}244(327 Yes 29
2.56 8.40| 887|1190( 84113 No 30
2.76 9.05| 611 820( 50| 67 No 3
40.49(|132.84| 401} 538(341}457 Yes 32
4.02) 13.19] 783|1050(116/156 No 33
8.06| 26.46] 977(1310(139(187 No 34
28.34( 92.97|1066(1430)230(308 No/Yes 35
2.34 7.69| 524 7037 43| 57 No 36
7.26| 23.82| 507| 680| 51| 68 No 37
20.08| 65.8911111{1490(152}204 Yes/No 38
2.29 7.51| 428 574| 42] 56 No 39
2.67 8.75| 729} 977| 57| 76 No 40
2.38 7.80] 75311010 43| 58 No 1
3.10| 10.16} 947(1270]157{21 16| 21 No 42
4.40| 14.43|1603(2150|218) 293 26| 35 No 43
4.76| 15.62]1998{2680|233(312 36| 48 No 44
3.00 9.84| 610| 818} 88|118 16| 22 No 45
3.70{ 12.15] 651 873| 87(116 20 27 No 46
3.62} 11.89} 798(1070| 97130 30| 40 No 47
3.36| 11.04| 449 602] 75|100 14| 19 No 48
10.17{ 33.35| 347)] 466] 79106 5 7 No 49
47.77|156.71] 247| 331)242]325 0 0 Yes 50
4.17] 13.67|1081}14501251}337 51| 68 No 51
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TABLE I.-

Brake Vertical - -
Response| Tire-tread] supply | Yaw Surface load |Nominal} _ _ P Pmax
Run} mode |condition |pressure|angle,| condition speed, | U3 [Ud,max | Hr
deg knots -

MPa| psi kN | 1bf MPa |psi |MPa |psi
52 B New 20 | 2900 6 Dry 85{19.1 75 0.46]| 0.47 0.06|12,1]1755{13.5[1958
53 B New 21 {3000 6 Dry 85|19.1 103 .41 .42 .06 9.8|1421{11.2]|1624
54 B New 20 ] 2900 6 Damp 61)13.8 77 .16 .22 .03} 2.8| 406] 3.9| 566
55 B New 21 | 3000 6 Damp 86]19.3 57 .20 .23 .06} 4.8| 696| 5.4| 783
56 B New 20 | 2900 6 Damp 84(18.9 77 .15 .19 .04| 3.3| 479| 4.2| 609
57 B New 20 | 2900 6 Damp 78117.5 106 .10 .17 .05} 1.9 276{ 3.8] 798
58 B New 21 | 3000 6 Flooded 83]18.7 56 .22 .25 .06f 4.2 609 5.5{ 798
59 B New 21 | 3000 6 Flooded 80(17.9 80 .12 .13 .07| 1.4] 203| 2.8{ 406
60 New 21 | 3000 6 Flooded 79117.7 92 .06
61 B New 19 | 2800 9 Damp 86|19.3 55 .20 .27 .07 3.4] 493] 4.2} 609
62 B New 20 | 2900 9 Damp 86/19.3 78 .15 .20 .06 2.8] 406| 3.8]| 551
63 B New 20 [ 2900 9 Damp 84|18.9 104 .09 .13 .04 1.8] 261| 2.8 406
64 B New 20 | 2900 12 Damp 85119.1 76 .15 .21 .06| 2.6} 377 3.1| 450
65 A Worn 20 | 2900 0 Dry 72116.2 49 .60 .67 .02(15.9]2306{18.2]2640
66 A Worn 21 | 3000 0 Dry 77117.2 73 .60 .65 .02(15.712277{17.7}2567
67 B Worn 21 | 3000 0 Dry 77|17.2 101 .58 .63 .03]17.9/2596{18.6)2698
68 B Worn 20 (2900 4] Damp 7[16.0 54 .18 .23 .02| 3.5! 508 4.5| 653
69 B Worn 21 | 3000 0 Damp 89]20.0 53 .13 .16 .03| 2.6| 377| 3.8| 551
70 B Worn 21 (3000 0 Damp 88[19.7 72 11 21 .02 2.8 406 3.7 537
71 B Worn 21 {3000 0 Damp 88/19.7] 104 .10 .21 .03} 2.0] 290/ 3.0] 435
72 B Worn 21 | 3000 0 Flooded 73)16.3 57 .1 .12 .05} 2.0 290| 3.0| 435
73 B Worn 20 | 2900 0 Flooded 73116.3 72 .08 .09 .06| 1.0f 145 2.2{ 319
74 Worn 21 |} 3000 0 Flooded 73}16.3 94 .06
75 B Worn 21 {3000 6 Dry 84)18.9 51 .49 .50 .08112.4)1798/(13.4]|1944
76 B Worn 21 | 3000 6 Dry 84118.9 75 .47 .49 .08[12.311784|13.4]1944
77 B Worn 21 ] 3000 6 Dry 86{19.3 99 .45 .47 .08(12.9[1871{14.0{2031
78 B Worn 21 | 3000 6 Damp 59(13.2 77 .08 .16 071 1.5( 218{ 2.4| 348
79 B Worn 21 |3000 6 Damp 88119.7 54 .12 .16 .05] 2.3} 334 3.0| 435
80 B Worn 21 | 3000 6 Damp 80117.9 58 1 .15 .04 1.7 247 2.6] 377
81 B Worn 21 13000 6 Damp 81]18.3 76 .08 12 .04 1.4} 203 3.2| 464
82 B Worn 21 (3000 6 Damp 80117.9 105 .08 .15 .06] 1.6f 232| 2.4]| 348
83 B Worn 21 | 3000 6 Flooded 79117.7 53 .10 .1 .04 1.9 276 3.7] 537
84 B Worn 20 {2900 6 Flooded 78{17.5 75 .07 .08 .05 71 102] 2.1 305
85 Worn 21 (3000 6 Flooded 78{17.6 93 .06
86 New 14 {2000 0 Dry 84118.8 46 .49
87 New 16 |2300 0 Dry 84118.9 7 .47
88 New 13 |1900 0 Dry 85{19.0 97 .36
89 A New 14 12000 0 Damp 82y18.5 54 .22 .40 .03| 7.0|1015[11.5]1668
90 A New 14. {2000 0 Damp 82{18.4 76 .23 B .03] 6.2 899 7.4|1073
91 A New 13 {1900 0 Damp 82{18.4 104 .18 .30 .04 4.5| 653| 6.1] 885
92 A New 14 {2000 0 Flooded 82{18.5 53 .25 .30 .06 4.8f 696( 6.5 943
93 A New 14 2000 0 Flooded 82{18.4 76 .12 .18 .06 1.9 276| 3.9| 566
94 New 14 |2000 0 Flooded 81{18.1 93 .06
95 New 10 |1500 0 Dry 83)|18.7 77 .28
96 A New 10 {1500 a Damp 82{18.4 55 .29 .33 03] 7.3]1059{ 7.611102
97 A New 10 |1500 1] Damp 82{18.5 75 .24 .29 .04| 5.8| 841 6.7 972
98 A New 10 {1500 0 Damp 83118.7 102 .20 .28 .04| 5.4} 783 7.6[1102
99 A New 10 |1500 0 Flooded 82(18.5 56 .23 .27 .04 4.9 71| 5.6] 812
100 A New 10 {1500 0 Flooded 82{18.4 77 11 .20 051 1.5) 218] 3.3] 479
i New 10 1500J_~ 0 J Flooded 82118.4 104 J .06

32



Concluded

T Tmax
kN-m}{ft~1bf| kN-m|£t-1bf
16.9|12 483|18.3]13 517
16.1[11 892|16.4|12 114

3.7} 2 733] 5.6] 4 136
6.4 4 727| 7.7] 5 688
4.5| 3 324} 5.6] 4 136
2,71 1 994 5.4] 3 989
6.4| 4 727| 8.2} 6 057
1.4] 1 034] 3.5| 2 585
6.5| 4 801| 7.3] 5 392
4.5]| 3 324 6.7| 4 949
2.1] 1 551| 4.0| 2 955
4.5 3 324| 5.1 3 767
20.7115 290)23.3{17 21
23.0116 989|25.0|18 466
22.5116 620(23.0(16 989
5.31 3 915| 6.8 5 023
4.5| 3 324 6.2 4 580
4.2] 3 102 5.9| 4 358
3.0[ 2 216 4.7| 3 472
2.2| 1 625{ 3.1} 2 290
1.2 686 2.41 1 773
18.1 |13 370(18.9(13 961
17.2|12 705(18.0{13 296
17.3112 779(17.8[13 148
1.7] 1 256 3.5] 2 585
3.8|] 2 807| 4.6 3 398
2.5] 1 847) 4.9 3 619
1.8]11 330] 4.91 3 619
1.8 1 330 3.11 2 290
1.5} 1 108 3.9{ 2 881
1.1 813 2.8] 2 068
8.01 5 909|13.5{ 9 972
8.4 6 205|10.0| 7 387
5.6 4 136 7.9 5 835
8.2 6 057 9.5 7 017
2.2 1 625§ 3.8 2 807
10.9( 8 051 |10.9]| 8 051
7.9| 5 8351 9.2| 6 796
7.01 5171 110.1| 7 460
6.8| 5 023} 8.5| 6 279
2.0 1 477 4.4} 3 250
L -

Average Gross Tire Tire

Torque _ _ Average slip stopping | stopping|cornering

limit, Hs |Ms,max slip velocity power power power Hydroplaning| Run
percent ratio
m/sec| ft/sec| kW hp | kW | hp kw |hp

0.24] 0.47 0.18 7.06{ 23.17|1514/2030{357|479 69} 93 No 52
.24 .39 .16 8.20( 26.89[1775[2380§391} 524 931125 No 53
.18 .36 .12 4.41] 14.48] 385] 516| 90{121 41} 55 No 54
.19 .28 .12 3.47| 11.40| S09; 683{112][150 44} 59 No 55
.14 .25 11 4.17( 13.69( 510 684|107}143 45| 60 No 56
.10 .29 .15 8.27| 27.14| 407} 546|113|152 43| 57 No 57
12 .18 .18 5.04| 16.55] 520| 698|124|166 25| 33 No 58
.04 .06 .19 7.51| 24.64] 393| 527] 87|117 13| 17 No 59
0 .90 41.87(137.36] 227| 305|207|277 0 0 Yes 60
.28 .43 .16 4.38} 14.36| 492| 660)177|238 89(120 No 61
a7 .37 .14 5.22] 17.11| S09( 683|170]228 891|120 No 62
2 .27 .09 4.88| 16.02| 396} 531|130(174 81{109 No 63
.18 .34 a7 6.36| 20.85{ 494 662]204|274 103|138 No 64
16 1 2.73 8.95|1089(14601118|158 No 65
1o 3.84| 12.60(1737]2330|180|241 No 66
.07 3.84| 12.59(2222]2980|176(236 No 67
.08 2.33 7.64] 3591 482 33| 44 No 68
.08 2.19 7.19| 319] 428 27| 36 No 69
.06 2.13 6.98] 374| 501} 27| 36 No 70
.05 2.78 9.11| 450| 604} 28| 38 No n
.13 3.71] 12.16| 230} 309| 31| M No 72
.10 3.72) 12.20| 220} 295{ 23| N No 73
.97 47.02|154.27| 204| 274]199| 267 Yes 74
.28 .46 .16 4.34) 14.23]1081 (1450241323 55| 74 No 75
.24 .47 a7 6.68| 21.9011521|2040] 344] 461 71| 95 No 76
.30 .45 .14 6.99| 22.94]1939(2600]|402|539 119|159 No 77
.08 .30 .10 4.04) 13.25| 192| 258] 42{ 56 20| 27 No 78
.09 .22 11 3.05| 10.01| 301 | 403{ 57{ 76 22| 29 No 79
.10 .23 1 3.20}| 10.51| 252| 338| 51} 69 221 30 No 80
.08 .26 .10 3.81] 12.50| 268| 359| 56| 75 27| 36 No 81
.10 .3 .08 4.37| 14.35] 349| 468{ 78[{105 44] 59 No 82
.04 .08 .20 5.311 17.41| 213| 286{ 51| 69 8l M No 83
.04 .25 .28 10.86| 35.64| 215| 288] 69] 92 4 5 No 84
~.01 .94 44.99(147.62| 231 | 310| 219|294 0 0 Yes 85
100 .08 1.95 6.39| 947{1270| 78|105 No 86
100 .07 2.53 8.31(1432[1920| 99(133 No 87
100 .04 2.25 7.3911499{2010| 70| 94 No 88
.07 2.02 6.64| 494 663} 39| 52 No 89
.05 2.1 6.93| 740} 992| 46| 62 No 90
.05 2.56 8.40( 737| 988 46| 62 No 91
.09 2.42 7.95| 573| 769| 53| M No 92
7 6.57| 21.54( 384 515 62| 83 No 93
.93 44.571146.23 | 244 327|227(305 Yes 94
100 .03 1.1 3.65( 917(1230{ 26| 35 No 95
.06 1.58 5.17] 661] 887{ 37| SO No 96
.05 1.76 5.79| 761{1020{ 38| 51 No 97
.04 2.04 6.70| 850{1140| 36| 48 No 98
.08 2.32 7.62( 556 745 47| 63 No 99
.06 2.38 7.82] 347| 466 25| 34 No 100
.94 50.441165.50) 239 321(234 (314 Yes 101
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Figure 6.- Typical time histories of parameters to describe operation of antiskid system. Run 52.
Nominal carriage speed, 75 knots; vertical load, 85 kKN (19 100 1bf); vaw angle, 6°; brake supply
pressure, 20 MPa (2900 psi); tire condition, new; surface condition, dry.
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Figure 9.- Typical time-history plots of measured and calculated parameters.
Nominal carriage speed, 75 knots; vertical load, 85 kN

(19 100 1bf); vaw angle, 6°; brake supply pressure, 20 MPa (2900 psi);
tire condition, new; surface condition, dry.

Run 52.
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Figure 10.- Least-squares fairing of friction data from run 33.
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{a) Run 42.

brake supply pressure, 21 MPa (3000 psi); tire condition, new; surface condition, dry.
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Nominal carriage speed, 40 knots; vertical load, 85 kN (19 000 1bf); yaw angle, 39;

Figure 12.~ Definition of various friction terms.
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(b) Run 55. Nominal carriage speed, 57 knots; vertical load, 85 kN (19 300 1bf); vaw angle, 6°;
brake supply pressure, 21 MPa (3000 psi); tire condition, new; surface condition, damp.

Figure 12.- Concluded.
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Figure 13.- Typical time histories of variables used to obtain power terms. Run 52. WNominal carriage
speed, 75 knots; vertical load, 85 kN (19 100 1bf); yaw angle, 6°; brake supply pressure, 20 MPa
(2900 psi); tire condition, new; surface condition, dry.
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Figure 14.- Brake pressure, brake torque, and skid signal relationship. Run 1. Nominal carriage speed,

54 knots; vertical load, 60 kN (13 400 1bf); yaw angle, 0°; brake supply pressure, 21 MPa (3000 psi);
tire condition, new; surface condition, dry, with one damp spot.
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Figure 15.- Typical brake system electronic and hydraulic response.
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Nominal carriage speed, 76 knots; vertical load, 84 kN (18 800 1bf); vaw
brake supply pressure, 21 MPa (3000 psi); tire condition, new;
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angle, 0°;

50



20 Dry —————= Flooded

Wheel 10
speed,
P 0 L I l ] | ) ! ] ! ] 1 ] i
40
Skid 20
signal,
mA g T ] J 1 | | 1 ] ! i ] ]
20 -~ - 3x10°
- 2 Brake
Brake pressure,
pressure, 10 psi
MPa 41
0 L . i Jo
1.0
Yy 5
| —— | . ',l
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time, sec

(a) Run 33. Nominal carriage speed, 54 knots; vertical load, 84 kN (18 800 1bf); yaw angle, 0°; brake
supply pressure, 21 MPa (3000 psi); tire condition, new; surface condition, dry to flooded.

Figure 16.- Antiskid-system response to transient runway conditions.
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{b) Run 35. Nominal carriage speed, 94 knots; vertical load, 83 kN (18 700 1bf); yaw angle, 09; brake
supply pressure, 21 MPa (3000 psi); tire condition, new; surface condition, dry to flooded.

FPigure 16.- Continued.
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(c) Run 36. Nominal carriage speed, 56 knots; vertical load, 84 kN (18 800 1bf); yaw angle, 0°; brake
supply pressure, 21 MPa (3000 psi); tire condition, new; surface condition, flooded to dry.

Figure 16.- Continued.
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Figure 16.- Concluded.
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Figure 17.- Effect of carriage speed on maximum achieved drag-force friction
coefficient. Vertical load, 80 kN (18 000 1bf); yaw angle, 09; brake
supply pressure, 21 MPa (3000 psi); tire condition, new.
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during an entire run.
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Figure 19.- Time history of tire surface temperature as a function of antiskid cycling. Run 3. Nominal
carriage speed, 70 knots; vertical load, 65 kN (14 600 1bf); yaw angle, 0°; brake supply pressure,
21 MPa (3000 psi); tire condition, new; surface condition, dry.
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Figure 20.- Effect of yaw angle on maximum drag-force friction coefficient. Vertical load,
80 kN (18 000 1bf); brake supply pressure, 21 MPa (3000 psi); tire condition, new.
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Figure 21.- Effect of tread wear on maximum drag-force friction coefficient. Vertical load,
80 kN (18 000 1bf); yaw angle, 0°; brake supply pressure, 21 MPa (3000 psi).
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Figure 22.- Effect of carriage speed on maximum achieved side-force friction coefficient.
Vertical load, 80 kKN (18 000 1bf); free rolling (unbraked); tire condition, new.
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Figure 23.- Effect of tread wear on maximum achieved side-force friction coefficient.
Vertical load, 80 kN (18 000 1bf); yaw angle, 6°; free rolling (unbraked).
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Figure 24.- Interaction between braking and cornering. Yaw angle, 6°; brake supply pressure,
21 MPa (3000 psi); tire condition, new.




€9

1.00

.75

¥4, max
(Single cycle) .50

.25

1.00

.75

H
d,max
(Single cycle) 50

.25

Figure 25.- Effect of cyclic braking on maximum achieved drag-force friction coefficient.
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Figure 26.- Ratios of average developed to maximum achieved brake pressure, torque, and drag-force
friction coefficient. Data include all runs except those which were torque limited the entire
run, those involving tire hydroplaning, and those performed to examine effects of runway

friction transition.
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Brake supply pressure, 21 MPa (3000 psi); yaw angles, 0° to 6°.
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Figure 28.- Effect of yaw angle on brake pressure, torque, and friction ratios.
Brake supply pressure, 21 MPa (3000 psi).
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APPENDIX

TIME HISTORIES

This appendix presents time histories in figures Al to Al101 of nine
parameters which describe the behavior of the antiskid system during each test
condition. These nine parameters, which are wheel speed, slip velocity, skid
signal, brake pressure, brake torque, drag-force friction coefficient, side-
force friction coefficient, alining torque, and slip ratio, are given for the
convenience of the user in studying detail characteristics of the antiskid
system.
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Figure Al .- Time histories for run 1. Nominal carriage speed, 54 knots;
vertical load, 59.6 kN (13 400 1bf); yaw angle, 09; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, dry.
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Figure A6.- Time histories for run 6.
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sure, 19 MPa (2800 psi); tire condition, new; surface condition, dry.
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Time histories for run 8.
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Figure A9.- Time histories for run 9. Nominal carriage speed, 77 knots;
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Figure A10.- Time histories for run 10. Nominal carriage speed, 101 knots;
vertical load, 59.2 kN (13 300 1bf); yaw angle, 0°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.
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14

sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.
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Figure A12.- Time histories for run 12.
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vertical load, 82.7 kN (18 600 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, damp.
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Figure A13.- Time histories for run 13. Nominal carriage speed, 104 knots;

vertical load, 82.3 kN (18 500 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, damp.
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Figure Al4.- Time histories for run 14. Nominal carriage speed, 56 knots;
vertical load, 97.4 kN (21 900 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, damp.
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Figure Al15.- Time histories for run 15. Nominal carriage speed, 75 knots;
vertical load, 97.4 kN (21 900 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, damp.
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Figure A16.~ Time histories for run 16. Nominal carriage speed, 101 knots;
vertical load, 97.4 kN (21 900 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, damp.
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Figure Al17.- Time histories for run 17. Nominal carriage speed, 55 knots;
vertical load, 120.1 kN (27 000 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, damp.
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Figure A18.- Time histories for run 18. Nominal carriage speed, 76 knots;
vertical load, 120.1 kN (27 000 1bf); vaw angle, 0°©; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.
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Figure A19.- Time histories for run 19.
vertical load, 120.1 kN (27 000 1bf); vaw angle, 0°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.
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Figure A20.- Time histories for run 20. Nominal carriage speed, 53 knots;

vertical load, 58.7 kN (13 200 1bf); yaw angle, 0°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, flooded.
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Figure A21.- Time histories for run 21. Nominal carriage speed, 75 knots;

vertical load, 59.2 kN (13 300 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, flooded.
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Figure A22.— Time histories for run 22. Nominal carriage speed, 93 knots;
vertical load, 58.7 kN (13 200 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, flooded.
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Figure A23.- Time histories for run 23. Nominal carriage speed, 53 knots;
vertical load, 77.8 kN (17 500 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, flooded.
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Figure A25.-~ Time histories for run 25.
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21 MPa (3000 psi); tire condition, new;
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Figure A26.— Time histories for run 26.
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Nominal carriage speed, 92 knots;

vertical load, 80.5 kN (18 100 1bf); yaw angle, 0°; brake supply pres-

sure, 21 MPa (3000 psi); tire condition, new; surface condition, flooded.
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Figure A27.- Time histories for run 27.
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Nominal carriage speed, 59 knots;

vertical load, 101.0 kN (22 700 1bf); yaw angle, 0°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, flooded.
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Figure A28.- Time histories for run 28. Nominal carriage speed, 75 knots;
vertical load, 94.3 kN (21 200 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, flooded.
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Figure A29.- Time histories for run 29.
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sure, 21 MPa (3000 psi); tire condition, new; surface condition, flooded.
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Figure A30.- Time histories for run 30. Nominal carriage speed, 53 knots;

vertical load, 127.7 kN (28 700 1bf); yaw angle, 0°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, flooded.
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Figure A31.- Time histories for run 31. Nominal carriage speed, 74 knots;
vertical load, 125.4 kN (28 200 1bf); yaw angle, 0°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, flooded.
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Figure A32.- Time histories for run 32. Nominal carriage speed, 93 knots;
vertical load, 116.5 kN (26 200 1bf); vyaw angle, 0°; brake supply pres-—
sure, 20 MPa (2900 psi); tire condition, new; surface condition, flooded.
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Figure A33.- Time histories for run 33. Nominal carriage speed, 54 knots;
vertical load, 83.6 kN (18 800 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, dry to
flooded.
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Figure A34.- Time histories for run 34. WNominal carriage speed, 76 knots;
vertical load, 83.6 kN (18 800 1bf); vaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, dry to

flooded.
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Figure A35.- Time histories for run 35,

Nominal carriage speed, 94 knots;

vertical load, 83.2 kN (18 700 1bf); yaw angle, 0°; brake supply pres-

sure, 21 MPa (3000 psi); tire condition, new; surface condition, dry to

flooded.
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Figure A36.- Time histories for run 36. Nominal carriage speed, 56 knots;
vertical load, 83.6 kN (18 800 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, flooded

to dry.
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Figure A37.- Time histories for run 37.
vertical load, 83.2 kN (18 700 1bf); yaw angle, 0°; brake supply pres-
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to dry.
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Figure A38.- Time histories for run 38. Nominal carriage speed, 94 knots;
vertical load, 83.2 kN (18 700 1bf); yaw angle, 09; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, flooded

to dry.
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Figure A39.- Time histories for run 39. Nominal carriage speed, 55 knots;
vertical load, 82.3 kN (18 500 1bf); yaw angle, 0°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, natural

rain.
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Figure A40.- Time histories for run 40.
vertical load, 82.3 kN (18 500 1bf); yaw angle, 0°;
sure, 20 MPa (2900 psi); tire condition, new; surface condition, natural

rain.
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Figure A41.- Time histories for run 41.

Nominal carriage speed, 103 knots;
vertical load, 82.3 kN (18 500 1bf); yaw angle, 0°; brake supply pres-

sure, 20 MPa (2900 psi); tire condition, new; surface condition, natural

rain.
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Figure A42.- Time histories for run 42, Nominal carriage speed, 40 knots;
vertical load, 84.5 kN (19 000 1bf); yaw angle, 39; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, dry.
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Figure A43.- Time histories for run 43.

Nominal carriage speed, 72 knots;
vertical load, 85.4 kN (19 200 1bf); yaw angle, 3°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, dry.
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Figure A44.- Time histories for run 44.

Nominal carriage speed, 97 knots;

vertical load, 86.3 kN (19 400 1bf); yaw angle, 3°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, dry.
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Figure AA5.- Time histories for run 45. Nominal carriage speed, 53 knots;
vertical load, 84.1 kN (18 900 1bf); vaw angle, 3°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.
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Figure A46.- Time histories for run 46. Nominal carriage speed, 77 knots;
vertical load, 83.2 kN (18 700 1bf); yaw angle, 3°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.
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Figure A47.- Time histories for run 47.
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Nominal carriage speed, 102 knots;:
vertical load, 84.1 kN (18 900 1bf); yaw angle, 3°©

; brake supply pres~
sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.
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Figure A48.- Time histories for run 48. Nominal carriage speed, 52 knots;

vertical load, 83.2 kN (18 700 1bf); yaw angle, 3°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, flooded.
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Figure A49.- Time histories for run 49. Nominal carriage speed, 79 knots;
vertical load, 82.7 kN (18 600 1bf); yaw angle, 3°; brake supply pres-
sure,

20 MPa (2900 psi); tire condition, new; surface condition, flooded.
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Figure A50.~ Time histories for run 50. Nominal carriage speed, 95 knots;
vertical load, 81.4 kN (18 300 1bf); yaw angle, 3°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, flooded.
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Figure A51.- Time histories for run 51.
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Nominal carriage speed, 47 knots:

vertical load, 85.0 kN (19 100 1bf); vaw angle, 6°; brake supply pres-

sure,

21 MPa (3000 psi);

tire condition, new; surface condition, dry.
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Figure A52.- Time histories for run 52.

APPENDIX

20 —
0 -
o o
1p
25 100 velocity,
/WMWW 50 h/SCC
0 - 0
40 —
20 w
0 .
20— —3 x 10°
—2 Brake
10— _|; presure,
psi
0 0
40 -3 x 10
—{2  Brake
20— torque,
0 : - 0
1.0—
5 W
o —
1.0
i W
T
5 4 x 10*
M 1 Alining
0 WMMMWW 0 torque,
‘J in-1bf
-5 -4
1.0
B
I3 -l d o4 J 1 1 1 J
0 1 2 3 4 5 6 7 8
Time, sec

Nominal carriage speed, 75 knots;

vertical load, 85.0 kN (19 100 1bf); yaw angle, 6°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, dry.
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Figure A53.- Time histories for run 53. Nominal carriage speed, 103 knots;

vertical load, 85.0 kN (19 100 1bf); yaw angle, 6°9; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, dry.
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Figure A55.- Time histories for run 55.

Nominal carriage speed,

57 knots;

vertical load, 85.9 kN (19 300 1bf); yaw angle, 6°9; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, damp.
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Figure A56.—- Time histories for run 56. Nominal carriage speed, 77 knots;
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vertical load, 84.1 kN (18 900 1bf); vaw angle, 6°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.
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Figure A57.- Time histories for run 57. Nominal carriage speed, 106 knots;
vertical load, 77.8 kN (17 500 1bf); yaw angle, 6°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.
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Figure A58.— Time histories for run 58. Nominal carriage speed, 56 knots;:

vertical load, 83.2 kN (18 700 1bf); yaw angle, 6°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, flooded.
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Nominal carriage speed, 80 knots;

vertical load, 79.6 kN (17 900 1bf); vaw angle, 6°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, flooded.
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Figure A60.- Time histories for run 60.
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vertical load, 78.7 kN (17 700 1bf); yvaw angle, 6°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, new; surface condition, flooded.
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Figure A61 .- Time histories for run 61.
vertical load, 85.9 kN (19 300 1bf); yaw angle, 99; brake supply pres-
sure, 19 MPa (2800 psi); tire condition, new; surface condition, damp.
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Figure A62.- Time histories for run 62.

Nominal carriage speed, 78 knots;

vertical load, 85.9 kN (19 300 1bf); yaw angle, 9°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.




APPENDIX

20 r
speed, 10
TpS
0
S1i % la)SH
P P
velocity, 25 100 < elocity,
m/sec 50 ft/sec
0 e ~ 0
40 —
Skid
signal, 20—
mA
0
20— —3 x 10°
Brake —2 Brake
K{t;ssum. 10— pressure,
a A_/\__-—_\___J___'_.*/— 1
0 : - 0
40 —3 x 10%
Brake 2 —2 Brake
torque, — torque,
KN 1 peibe
e 0
1.0
Mg
“8
Alining
torque,
kN-m
1.0
sii
ratio B
0 1 2 4 5 6

Time, sec

Figure A63.- Time histories for run 63.

Nominal carriage speed, 104 knots;

vertical load, 84.1 kN (18 900 1bf); yaw angle, 9°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.
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Figure A64.- Time histories for run 64. Nominal carriage speed, 76 knots;
vertical load, 85.0 kN (19 100 1bf); yaw angle, 12°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, new; surface condition, damp.
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Figure A65.— Time histories for run 65.
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Nominal carriage speed, 49 knots;

vertical load, 72.1 kN (16 200 1bf); vaw angle, 0°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, worn; surface condition, dry.
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Figure A66.—~ Time histories for run 66. Nominal carriage speed, 73 knots;

vertical load, 76.5 kN (17 200 1bf); yaw angle, 0°©; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, dry.
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Figure A67.- Time histories for run 67.

Nominal carriage speed, 101 knots;

vertical load, 76.5 kN (17 200 1bf); vaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, dry.
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Figure A68.- Time histories for run 68. Nominal carriage speed, 54 knots;
vertical load, 71.2 kN (16 000 1bf); yaw angle, 0°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, worn; surface condition, damp.
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Figure A69.— Time histories for run 69. Nominal carriage speed, 53 knots;
vertical load, 89.0 kN (20 000 1bf); yvaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, damp.
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Figure A70.- Time histories for run 70.
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Nominal carriage speed, 72 knots;

vertical load, 87.6 kN (19 700 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, damp.
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Figure A71.- Time histories for run 71.

Nominal carriage speed, 104 knots;

vertical load, 87.6 kKN (19 700 1bf); yaw angle, 09; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, damp.
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Figure A72.- Time histories for run 72. Nominal carriage speed, 57 knots;

vertical load, 72.5 kN (16 300 1bf); vaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, flooded.
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Figure A73.- Time histories for run 73.

Nominal carriage speed, 72 knots;

vertical load, 72.5 kN (16 300 1bf); yaw angle, 0°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, worn; surface condition, flooded.
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Figure A74.- Time histories for run 74. Nominal carriage speed, 94 knots;

vertical load, 72.5 kN (16 300 1bf); yaw angle, 0°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, flooded.
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Figure A75.- Time histories for run 75.

Nominal carriage speed,

51 knots;

vertical load, 84.1 kN (18 900 1bf); yaw angle, 6°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, dry.
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Figure A76.- Time histories for run 76. Nominal carriage speed, 75 knots;
vertical load, 84.1 kN (18 900 1bf); yaw angle, 6°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, dry.
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Figure A77.- Time histories for run 77. Nominal carriage speed, 99 knots;

vertical load, 85.9 kN (19 300 1bf); vaw angle, 6°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, Adry.
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Figure A78.- Time histories for run 78. Nominal carriage speed, 77 knots;
vertical load, 58.7 kN (13 200 1bf); yaw angle, 6°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, damp.
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Nominal carriage speed, 54 knots;

vertical load, 87.6 kN (19 700 1bf); vaw angle, 6°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, damp.
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sure, 21 MPa (3000 psi); tire condition, worn; surface condition, damp.
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Figure A81.- Time histories for run 81. Nominal carriage speed, 76 knots;
vertical load, 81.4 kN (18 300 1bf); vaw angle, 6°; brake supply pres-—
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, damp.
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Figure A82.- Time histories for run 82. Nominal carriage speed, 105 knots;
vertical load, 79.6 kKN (17 900 1bf); yaw angle, 6°9; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, damp.
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Figure A83.- Time histories for run 83. Nominal carriage speed, 53 knots;
vertical load, 78.7 kN (17 700 1bf); vaw angle, 6°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, flooded.
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Figure A84.- Time histories for run 84.
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Nominal carriage speed, 75 knots;

vertical load, 77.8 kN (17 500 1bf); yaw angle, 6°; brake supply pres-
sure, 20 MPa (2900 psi); tire condition, worn; surface condition, flooded.
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Nominal carriage speed, 93 knots;

vertical load, 78.3 kN (17 600 1bf); yaw angle, 6°; brake supply pres-
sure, 21 MPa (3000 psi); tire condition, worn; surface condition, flooded.
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Figure A86.- Time histories for run 86.

Nominal carriage speed, 46 knots;

vertical load, 83.6 kN (18 800 1bf); yaw angle, 00; brake supply pres-
sure, 14 MPa (2000 psi); tire condition, new; surface condition, dry.
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Nominal carriage speed, 71 knots;

vertical load, 84.1 kN (18 900 1bf); yaw angle, 0°; brake supply pres-
sure, 16 MPa (2300 psi); tire condition, new; surface condition, dry.
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Figure A88.~ Time histories for run 88.

Nominal carriage speed, 97 knots;

vertical load, 84.5 kN (19 000 1bf); yaw angle, 0°; brake supply pres-
sure, 13 MPa (1900 psi); tire condition, new; surface condition, dry.
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Figure A89.- Time histories for run 89.
vertical load, 82.3 kN (18 500 1bf);

Nominal carriage speed, 54 knots;
vaw angle, 0°; brake supply pres-

sure, 14 MPa (2000 psi); tire condition, new; surface condition, damp.
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Figure A90.- Time histories for run 90. Nominal carriage speed, 76 knots;
vertical load, 81.8 kKN (18 400 1bf); yaw angle, 09; brake supply pres-
sure, 14 MPa (2000 psi); tire condition, new; surface condition, damp.
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Figure A91.- Time histories for run 91.

vertical load, 81.8 KN (18 400 1bf); yaw angle, 0°;

Nominal carriage speed, 104 knots;
brake supply pres-

sure, 13 MPa (1900 psi); tire condition, new; surface condition, damp.
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Figure A92.- Time histories for run 92. Nominal carriage speed, 53 knots;
vertical load, 82.3 kN (18 500 1bf); yaw angle, 0°; brake supply pres-
sure, 14 MPa (2000 psi); tire condition, new; surface condition, flooded.
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Figure A93.- Time histories for run 93. Nominal carriage speed, 76 knots;

vertical load, 81.8 kN (18 400 1bf); vaw angle, 0°; brake supply pres-

sure, 14 MPa (2000 psi); tire condition, new; surface condition,

flooded.
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Figure A94.- Time histories for run 94.
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Nominal carriage speed, 93 knots;

vertical load, 80.5 kN (18 100 1bf); yaw angle, 0°; brake supply pres-

sure, 14 MPa (2000 psi); tire condition, new; surface condition, flooded.
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Figure A95.- Time histories for run 95.
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Nominal carriage speed, 77 knots;

vertical load, 83.2 kN (18 700 1bf); yaw angle, 0°; brake supply pres-
sure, 10 MPa (1500 psi); tire condition, new; surface condition, dry.
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Figure A96.- Time histories for run 96. Nominal carriage speed, 55 knots;

vertical load, 81.8 kN (18 400 1bf); yaw angle, 0°; brake supply pres-
sure, 10 MPa (1500 psi); tire condition, new; surface condition, damp.
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Figure A97.- Time histories for run 97. Nominal carriage speed, 75 knots;
vertical load, 82.3 kN (18 500 1bf); yaw angle, 0°; brake supply pres-
sure, 10 MPa (1500 psi); tire condition, new; surface condition, damp.
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Figure A98.- Time histories for run 98. Nominal carriage speed, 102 knots;
vertical load, 83.2 kN (18 700 1lbf); yaw angle, 0°; brake supply pres-
sure, 10 MPa (1500 psi); tire condition, new; surface condition, damp.
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Figure A99.- Time histories for run 99.
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Nominal carriage speed, 56 knots;

vertical load, 82.3 kN (18 500 1bf); yaw angle, 0°; brake supply pres-

sure, 10 MPa (1500 psi);

tire condition, new; surface condition, flooded.
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Figure A100.~ Time histories for run 100. Nominal carriage speed, 77 knots;
vertical load, 81.8 kN (18 400 1bf); yaw angle, 0°; brake supply pres-
sure, 10 MPa (1500 psi); tire condition, new; surface condition, flooded.
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Figure A101.- Time histories for run 101.
vertical load, 81.8 kN (18 400 1bf); yaw angle, 0°; brake supply pres-
sure, 10 MPa (1500 psi); tire condition, new; surface condition, flooded.

Nominal carriage speed, 104 knots;
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